mapreduce 之 数据去重

1.重写map阶段

package hzy.com.WordDeduplication;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordDeduplicationMapper extends Mapper<Object,Text, Text, Text>{
    private Text text =  new Text("");

    @Override
    protected void map(Object key, Text value,
            Mapper<Object, Text, Text, Text>.Context context)
            throws IOException, InterruptedException {
        //具体实现方法 输出为 text,null
        context.write(value, text);
    }
//    
    

}

2.重写reduce阶段

package hzy.com.WordDeduplication;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordDeduplicationReducer extends  Reducer<Text, Text, Text, Text>{

    @Override
    protected void reduce(Text arg0, Iterable<Text> arg1,
            Reducer<Text, Text, Text, Text>.Context arg2) throws IOException,
            InterruptedException {
        arg2.write(arg0, new Text(""));
    }
    
    

}

3.main 函数

package hzy.com.WordDeduplication;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordDeduplicationApp {
    public static void main(String[] args) throws Exception{
          //1.连接hadoop
         Configuration cf=new Configuration();
          cf.set("fs.defaultFS","hdfs://hadoop0:9000/");
          //2.创建Job,设置入口
        Job job = Job.getInstance(cf);
        job.setJarByClass(WordDeduplicationApp.class);
         //3.读取hdfs的数
        
         FileInputFormat.addInputPath(job, new Path("/data/source.txt"));
         FileInputFormat.addInputPath(job, new Path("/data/source2.txt"));
        
        //4.进行mapper计算
         job.setMapperClass(WordDeduplicationMapper.class);
         //map输出 key
         job.setMapOutputKeyClass(Text.class);
         //map输出value
         job.setMapOutputValueClass(Text.class);
        

         //setCombinerClass  与  setReducerClass同时只能使用一个
        // job.setCombinerClass(WordDeduplicationReducer.class);
        
        
         //5.进行reducer计
         job.setReducerClass(WordDeduplicationReducer.class);
         //reduce输出key
           job.setOutputKeyClass(Text.class);
           //reduce输出value
           job.setOutputValueClass(Text.class);
           //6.写出结果到hdfs
           FileOutputFormat.setOutputPath(job, new Path("/data/xt0"));//写入的目录应该是空的,否则报错
           //7.提交任
           job.waitForCompletion(true);
        
        
        
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值