秋柴
码龄4年
关注
提问 私信
  • 博客:28,342
    28,342
    总访问量
  • 22
    原创
  • 2,251,816
    排名
  • 14
    粉丝
  • 0
    铁粉

个人简介:一个非计算机专业的萌新

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山西省
  • 加入CSDN时间: 2021-03-11
博客简介:

weixin_56005867的博客

查看详细资料
个人成就
  • 获得18次点赞
  • 内容获得3次评论
  • 获得53次收藏
创作历程
  • 4篇
    2023年
  • 18篇
    2022年
成就勋章
兴趣领域 设置
  • Python
    python
  • 编程语言
    r语言
  • 开发工具
    pycharm
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python爬虫入门(DAY4)选择器selector创建(re/XPATH/Beautiful Soup/css/parser)(难点)

正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex、regexp或RE),是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为\"元字符\"),是计算机科学的一个概念。即通过我们规定好的提取规则,将HTML文档中的一些特殊资源片段(类似有css,xpath,下载资源地址等)提取出来,这些资源再经过后续处理美化(比如下载,保存,求和,统计等),就可以得到我们最终需要的资源。2.id属性值类似于身份证号码,在一个页面中是唯一的,不可重复的。
原创
发布博客 2023.05.15 ·
932 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Python爬虫入门(DAY 3)解析HTML与web

非贪婪匹配),在访问段的IP地址下进行投递包装好的数据包(简化,实际过程远远比这个复杂,感兴趣可以了解我之前的博客)(注意,是数据包),所以我们看到的最终内容其实是浏览器在站内解析后的内容,这时,大家就明白了,为什么会显示202,或者403,这只是得到了服务器端的状态,我们还需要继续对response进行解析。大部分国产的浏览器(qq浏览器,uc浏览器,猎豹浏览器,360浏览器)基本上是在IE浏览器的内核上进行的二次开发,现在国内市场上有许多双内核的浏览器,使用的是trident,webkit内核.
原创
发布博客 2023.05.13 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python爬虫十天入门计划(DAY 2)HTTP,FTP,www区别及HTTP响应形式总结

用户要连上FTP 服务器,就要用到 FTP 的客户端软件,通常 Windows自带“ftp”命令,这是一个命令行的 FTP客户程序,另外常用的 FTP 客户程序还有FileZilla、 CuteFTP、Ws_FTP、Flashfxp、LeapFTP、流星雨-猫眼等。GET方法是默认的HTTP请求方法,我们日常用GET方法来提交表单数据,然而用GET方法提交的表单数据只经过了简单的编码,同时它将作为URL的一部分向Web服务器发送,因此,如果使用GET方法来提交表单数据就存在着安全隐患上。
原创
发布博客 2023.05.12 ·
911 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python爬虫十天入门计划(纯手写)

爬虫并不是一门很难的技术,让我由浅入深,逐步为大家去揭开它的神秘面纱(预告会拿学校官网开刀)
原创
发布博客 2023.05.11 ·
128 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

信号与系统(day12)

机械振动与噪声学(总算到我的专业范畴了,这一部分我尽量用课上所学的知识,解释船舶柴油机,船舶辅机等船舶机械在运行时噪声的来源与分析方法。可能更新会很慢,见谅)1.定义:物体或质点在其平衡位置附近所作有规律的往复运动。机械振动包括简谐运动、单摆、外力作用下的振动等,简谐运动是最基本最简单的机械振动。简弦振动:振动图像(质点位移-时间)是正弦曲线的振动称为简谐运动。F=-kx和简谐运动是充要条件。摆角小于10度的单摆可看作简谐运动(此时运动轨迹近似一条直线,可推导出F=-kx)。F=-kx不能看作
原创
发布博客 2022.09.28 ·
238 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

信号与系统(day11)

Z变换 如果用拉氏变换来分析采样系统,则系统的输出必然是 有关于S的超越函数,求其拉氏反变换是一件麻烦的事。经过科学家们的努力,寻找了一种 Z 变换法,在这种变换下,使原来的 s 超越方程变成了一个以 z 为算子的代数方程,这一方法的引入使采样系统的分析在理论上有了大的发展。 Z 变换与拉氏变化有类似之处。拉氏变换的每一种运算规则都有一个相应的 Z 变换应用。 Z变换(Z-transformation)是对离散序列进行的一种数学变换,常用于求线性时不变差分方程的解
转载
发布博客 2022.09.25 ·
230 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

信号与系统(day10)补充

一.帕塞瓦尔定理(这个定理我自己还没有直接推导出来,先写出来,水字数,之后我推导一下) 1.定义(能量角度): 从能量守恒角度,帕塞瓦尔定理指任意周期信号x(t)在其基本周期上的信号能量是 左侧是信号x(t)的平均功率(即单位时间内的能量)。右侧的/x(t)/2是x(t)中第k次傅立叶系数(即第k次谐波)的平均功率。整个公式连起来说明周期信号的平均功率等于信号全部谐波分量(傅立叶系数)的平均功率之和。(这个定理之前在广义傅立叶级数展开由实数域推广到复数域的广义傅立叶级数
原创
发布博客 2022.09.24 ·
3303 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

信号与系统(day10)

传递(系统)函数前言:我们之前提到过,任何动态系统分析的主要目的是求系统针对特定输入(激励)信号的输出(响应)。系统的响应包括两部分分量:由系统本身具有的初始状态或者初始条件引起的零状态输入响应,以及由外部激励信号产生的零状态响应。由于傅立叶变换不能处理系统的初始条件(傅立叶变换不涉及积分计算),所以系统的傅立叶变换只适用于系统零状态响应的计算。而利用傅立叶变换在频域(复数域)分析线性时不变系统是基于传递或系统函数的概念。一.正文 1.利用傅立叶变换在频域中的传递函数(注意变量为jw)
原创
发布博客 2022.09.24 ·
1760 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

信号与系统(day9)

一.差分方程在日常工作中,我们使用到最多的概念是微分方程。然而,在工程实际中,我们得到的信号大多都是离散序列。在这种前提下,我们就引入差分方程。包含未知函数的差分及自变数的方程。在求微分方程的数值解时,常把其中的微分用相应的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化的一个例子。(1)定义:来源(百度百科)(2)常系数差分方程是不是已经开始懵逼了,这个方程表示什么?为什么要表示成这个样子?淡定,且听我细细道来。(常系数差分
原创
发布博客 2022.09.21 ·
720 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

信号与系统(day8)

初等复变函数
原创
发布博客 2022.09.18 ·
744 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

信号与系统(day7)

拉普拉斯逆变换的一般计算方法 (直接利用我们之前所讲的拉普拉斯逆变换公式去计算拉普拉斯逆变换需要用到围线积分/这一块我之后用matlab具体讲解。然而,基于我们之前研究的基本信号的拉氏正变换,我们可以处理在日常计算遇到的问题。下面我们用术语对上面的内容进行描述。 基于信号与单边拉普拉斯变换对的关系,我们可以利用若干基本变换以及拉普拉斯变换的性质,就可以求得几乎所有在线性系统中出现的拉普拉斯逆变换问题) 针对拉普拉斯变换域方法中出现关于s的多项式之比的形式,通过部分分
原创
发布博客 2022.09.14 ·
1807 阅读 ·
3 点赞 ·
2 评论 ·
2 收藏

信号与系统(day6)

复数与复变函数(声学前奏)
原创
发布博客 2022.09.07 ·
574 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

信号与系统(day5)

拉普拉斯变换
原创
发布博客 2022.09.06 ·
272 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

信号与系统(day4)

一.周期函数的傅立叶级数的三种形式(1)复指数型 f(t) = ∑C(k)e(jk兀/Lt)=∑C(k)e(jkwt)C(k)=1 /2L∫f(t)e(-jkwt)dt=1/T∫(T)f(t)e(-jkwt)dt(2)三角函数型 f(t)= a/2 + ∑〈a(k)cos(kwt)+b(k)sin(kwt)〉(计算一个给定周期的信号的傅立叶级数)(3)余弦函数型 f(t) = c+ ∑2 lc(k)l cos(kwt+⊙)(进行信号的谱分析,即频率分析)w是周期信号
原创
发布博客 2022.09.04 ·
351 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

信号与系统(day3)

一、傅立叶分析属于调和级数,能将满足一定条件的函数表示成三角函数(正弦函数或余弦函数)或者他们的积分的线性组合 (狄利克雷条件)三个条件:1可积 2有限间断点 3 间断点函数极限存在 傅立叶分析就是把看似杂乱无章的时域信号变化成具有频率,幅度,和相位三要素的一组正弦(余弦)信号的确定组合。这种变化的目的就是找出这些(频域)基本正弦或余弦信号中振幅较大(能量较高)信号对应的频率,从而找出主要信号分量的特性。 时域:时域是一个数学意义,表示以时
原创
发布博客 2022.09.03 ·
2193 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

信号与系统(day2)

(我们所研究的系统均为时不变系统即LTI系统)1.线性/非线性/差分方程线性微分方程可以分为线性时不变微分方程(LTI)和线性时变微分方程。在LTI方程中,因变量及其各阶导数是以线性组合的形式出现,且各项系数均为常数(这种方程也可以称为常系数线性微分方程)在线性时变微分方程中,因变量及其高阶导数虽然以线性排列,但是其系数中可以含有其他变量。为了保证系统的线性,微分方程中不能包含因变量及其倒数的幂级数,其他函数或者乘积。类比于线性微分方程,我们可以将线性差分方程分为线性时不变差分方程和
原创
发布博客 2022.08.30 ·
397 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

信号与系统学习(day1)

一个菜鸡学信号
原创
发布博客 2022.08.28 ·
1041 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

pycharm快捷键

原创
发布博客 2022.04.22 ·
501 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MobileNetV3 模型

mobilenetv3网络特点及主干 (1)使用mobilenetv3模型的优势:1 .添加了Squeeze-and-Excitation 结构在,通过训练的过程中自行分配权重在 feature map上,从而达到更好的效果。2 .其次,Nonlinearities在非线性激活这块采用了h-wish在层数较深的那基层中, 也就是基于ReLU6的修改版。3.与v2相比,相对减少在最后,在7×7avgpool之前的channel数,在不太大影响 accuracy的同时,精简了支出。4 ...
原创
发布博客 2022.04.20 ·
3121 阅读 ·
1 点赞 ·
1 评论 ·
18 收藏

Python循环语句及随机数生成

Python循环语句编写程序时的三种顺序:顺序:从上向下,顺序执行代码 分支:根据条件判断,决定执行代码的分支 循环:让特定代码重复执行(解决程序员重复工作)Python for循环语句for 变量 in range():、range(stop): 0-stop-1range(start,stop): start-stop-1range(start,stop,step): start-stop step(步长)If :循环需要执行的代码else:...
原创
发布博客 2022.04.20 ·
6082 阅读 ·
5 点赞 ·
0 评论 ·
19 收藏
加载更多