拉普拉斯逆变换的一般计算方法
(直接利用我们之前所讲的拉普拉斯逆变换公式去计算拉普拉斯逆变换需要用到围线积分/这一块我之后用matlab具体讲解。然而,基于我们之前研究的基本信号的拉氏正变换,我们可以处理在日常计算遇到的问题。下面我们用术语对上面的内容进行描述。
基于信号与单边拉普拉斯变换对的关系,我们可以利用若干基本变换以及拉普拉斯变换的性质,就可以求得几乎所有在线性系统中出现的拉普拉斯逆变换问题)
针对拉普拉斯变换域方法中出现关于s的多项式之比的形式,通过部分分式展开,将F(s)表示成已知基本函数的各个部分分式之和,即可以获得拉普拉斯逆变换)
(是不是感觉很复杂,不要慌,让我们发个朋友圈,然后好好讨论这个问题)
一.部分分式展开法适用于严格真有理函数F(s),即
式中通常m<n。如果m≥n,即F(s)是非有理函数,则需要使用长除法。给大家举一个具体例子吧
这是一个非严格的有理分式,我们对F(s)进行长除。得到
等式右侧,1(t)是单位冲激函数的逆变换,而后面一项,我们继续探讨。
二.亥纬赛系数公式
(这个公式是在单位冲激函数进行拉普拉斯变换推导时出现过,有兴趣可以翻一翻我的垃圾堆。我们直接出结果)
公式一
公式二
其中r为分母最高次项系数,i为系数由低阶向高阶展开式的位次
(后面会有例子)
(这个式子从推导过程来看是一个积分式)
三.具体分类(我们直接用具体例子进行演示,大家可以观察变换过程)
极点:是指F(s)分母等于0的解。针对分母解的不同,就能分成不同的解法
(1)分母各分式均为实数单极点
F(s)公式形式
例子
其他系数也可以利用亥维赛系数公式一进行计算。之后我们利用逆变换与正变换的关系即可
(2)分母各式中存在实数多重极点
F(s)公式形式
这样变换是不是就与分类一相同了吧
(3)复数共轭对极点
F(s)形式为
式中二次项无实根,即有一对复数共轭极点。而这种情况,我们的通解为将它与三角函数的拉氏正变换关系进行研究。
最后,我们在给出单边拉普拉斯变换时,必须要给出信号的定义域(因为不满足狄利克雷条件的信号我们是不能使用傅立叶变换的)