目录
Leecode 1049.最后一块石头的重量II
题目地址:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
题目类型:01背包
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
// 背包的最大容量应当是 sum / 2 ,因为当两堆石头的重量最接近的时候m
int sum = accumulate(stones.begin(), stones.end(), 0);
int target = sum / 2;
vector<int> dp(target + 1);
for (int i = 0; i < stones.size(); ++i) {
for (int j = target; j >= stones[i]; --j) {
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] * 2;
}
};
Leecode 494.目标和
题目地址:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
题目类型:01背包
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
// sum = right + left
// target = right - left
// sum - target = 2left
int sum = accumulate(nums.begin(), nums.end(), 0);
if ((sum - target) % 2 == 1 || abs(target) > sum) return 0;
// left代表较少那一部分组合的和
int left = (sum - target) / 2;
// dp数组的含义是,当求和为i时,组合的数目
vector<int> dp(left + 1);
dp[0] = 1;
for (int i = 0; i < nums.size(); ++i) {
for (int j = left; j >= nums[i]; --j) {
dp[j] += dp[j - nums[i]];
}
}
return dp[left];
}
};
Leecode 474.一和零
题目地址:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
题目类型:01背包
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
// 存储个数
vector<pair<int, int>> nums;
for (auto &it : strs) {
int zero = 0, one = 0;
for (auto &c : it) {
if (c == '0') zero++;
else one++;
}
nums.push_back({zero, one});
}
// dp[i][j]代表当有i个0,j个1时,最大的子集长度
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
// 先物品,后背包
for (int k = 0; k < nums.size(); ++k) {
// 二维
for (int i = m; i >= nums[k].first; --i) {
for (int j = n; j >= nums[k].second; --j) {
// 注意,这里如果将第k个子集放进来,则代表增加一个子集,value是1,所以直接加1就行了
dp[i][j] = max(dp[i][j], dp[i - nums[k].first][j - nums[k].second] + 1);
}
}
}
return dp[m][n];
}
};
可以少一个循环,时间复杂度再降一下:
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
// dp[i][j]含义:当0的容量为i,1的容量为j时,子集的最大数目
// 可知此时最大值问题,故考虑状态转移方程1
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int k = 0; k < strs.size(); ++k) { // 遍历所有物品,即遍历所有子集
int num0 = 0, num1 = 0;
for (char c : strs[k]) {
if (c == '0') num0++;
else num1++;
}
for (int i = m; i >= num0; --i) {
for (int j = n; j >= num1; --j) {
dp[i][j] = max(dp[i][j], dp[i - num0][j - num1] + 1);
}
}
}
return dp[m][n];
}
};