本周主要复习背包问题,线性DP,区间DP,计数类DP,数位统计DP,状态压缩DP,树形DP,记忆化搜索等内容。
算法总结
背包问题
01背包
二维
for (int i = 1; i <= n; i ++ )
for (int j = 0; j <= m; j ++ )
{
f[i][j] = f[i - 1][j];
if (j >= v[i]) f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
一维
for (int i = 1; i <= n; i ++ )
for (int j = m; j >= v[i]; j -- ) //逆序
f[j] = max(f[j], f[j - v[i]] + w[i]);
完全背包
for (int i = 1; i <= n; i ++ )
for (int j = v[i]; j <= m; j ++ ) //正序
f[j] = max(f[j], f[j - v[i]] + w[i]);
多重背包
二进制优化,优化后变为01背包问题
for (int k = 1; k <= s; k *= 2) //s是限制数量
{
s -= k;
t.push_back({v * k, w * k});
}
if (s > 0) t.push_back({v * s, w * s});
线性DP
最长上升子序列
f[1] = 1; //f[i]表示以第i位结尾的最长长度
for (int i = 2; i <= n; i ++ )
{
f[i] = 1;
for (int j = 1; j < i; j ++ )
if (a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
}
int res = 0;
for (int i = 1; i <= n; i ++ )
res = max(res, f[i]);
最长公共子序列
//f[i][j]表示所有从a[1 ~ i],b[1 ~ j]且以b[j]结尾的公共子序列的最大长度
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ )
{
f[i][j] = f[i - 1][j];
if (a[i] == b[j])
{
int maxv = 1;
for (int k = 1; k < j; k ++ )
{
maxv = max(maxv, f[i - 1][k] + 1);
}
f[i][j] = max(f[i][j], maxv);
}
}
}
int res = 0;
for (int i = 1; i <= m; i ++ ) res = max(res, f[n][i]);
区间DP
一般外层循环从小到大枚举区间长度,内层循环枚举左端点的位置。
f[i][j]
表示区间(i, j)上的某种性质。
计数类DP
特点:不能重叠,不能遗漏。
可能与组合数学相关联。
也可能转换成其他类型的动态规划问题。
数位统计DP
主要思路:分类讨论。
依次枚举每个数位可能出现的情况。
一般问题是求区间(a, b)内满足某条件的数的个数,可转换为f(b) - f(a - 1)
,其中f(n)
表示从0 ~ n区间内满足条件的个数。(类似前缀和的思想)
状态压缩DP
一般n的范围较小,可以用二进制数枚举出所有可能出现的情况。
树形DP
向下搜索(类似题目:大臣的旅费)
//d1、d2数组分别是向下的最远距离和次远距离,p数组记录最远距离的路径
void dfs_d(int u, int fa) //通过子节点更新父节点
{
for (int i = 0; i < g[u].size(); i ++ )
{
auto j = g[u][i];
if (j.first != fa)
{
dfs_d(j.first, u);
int d = d1[j.first] + j.second;
if (d > d1[u])
{
d2[u] = d1[u];
d1[u] = d;
p[u] = j.first;
}
else if (d > d2[u]) d2[u] = d;
}
}
}
向上搜索(类似题目:树的中心)
//up数组是向上的最远距离(反方向),p数组记录最远距离的路径
void dfs_u(int u, int fa) //通过父节点更新子节点
{
for (int i = 0; i < g[u].size(); i ++ )
{
auto j = g[u][i];
if (j.first != fa)
{
if (p[u] == j.first) up[j.first] = max(up[u], d2[u]) + j.second;
else up[j.first] = max(up[u], d1[u]) + j.second;
dfs_u(j.first, u);
}
}
}
其他总结
- 快速幂函数的返回类型和参数类型最好统一,否则在计算过程中要进行类型转换。
- 其他问题转换为背包问题时,有几个限制就要用几维的数组,再对空间进行优化。
- 迭代器遍历vector:
for (auto i = v.begin(); i != v.end(); i ++ ) // 若为int型vector,迭代器类型为vector<int>::iterator
- 使用迭代器删除元素:
v.erase(i); // i为迭代器
- 使用迭代器访问元素:
auto t = (*i); // i为迭代器
本周拓展题
以下题目均来源于acwing网站
背包1:1022. 宠物小精灵之收服
背包2:7. 混合背包问题
线性DP:272. 最长公共上升子序列
区间DP:479. 加分二叉树
计数类DP:306. 杰拉尔德和巨型象棋
数位统计DP:1081. 度的数量
状态压缩DP:1064. 小国王
树形DP:1073. 树的中心
记忆化搜索:898. 数字三角形