pytorch基础
文章平均质量分 89
主要是运用pytorch图像识别实例
weixin_56118617
清新、唯美的二次元博客主题 www.sleepangle.top
展开
-
好莱坞明星识别-第六周
调用官方VGG16模型,微调提高测试集准确率原创 2022-11-04 16:23:12 · 235 阅读 · 0 评论 -
第P7周:咖啡豆识别
探索(难度大):1.不影响准确率的情况下轻量化模型。🏡 我的环境:● 语言环境:Python3.8● 编译器:Pycharm● 深度学习环境:Pytorch。原创 2022-11-05 21:04:26 · 950 阅读 · 1 评论 -
猴痘病识别-第四周
1.本次学习动态学习率,学习CyclicLR的用法。2.学习了保存加载模型和指定图片预测的方法。原创 2022-10-16 00:27:46 · 336 阅读 · 0 评论 -
天气识别-第三周
1.学习torchvision.transforms.Compose()类。这个类的主要作用是串联多个图片变换的操作。也学习了Batch Normalization,它通过引入层内的批归一化操作对特征进行归一化,减少ICS(Internal Covariate Shift),实现了加速网络收敛的效果。2.改进模型提升测试集准确率原创 2022-10-09 18:25:33 · 552 阅读 · 0 评论 -
实现mnist手写数字识别(第一周)
本文为🔗365天深度学习训练营中的学习记录博客。1.了解pytorch开发基础流程,学习一些函数的使用方法。2.通过改进CNN模型,20个epoch准确率达到了99.5%。原创 2022-09-28 14:39:01 · 3584 阅读 · 0 评论 -
彩色图片识别-第二周
1.CIFAR10采用深度学习方法来测试,取得了不错的效果。2.学习了卷积层和池化层的推导公式。改进CNN模型引入Dropout层,并将padding设置为same(即输入和输出图像大小一样)。分类网络引入softmax作为分类器。模型最终准确率达到了76.2%。原创 2022-10-02 22:05:28 · 1522 阅读 · 0 评论 -
运动鞋识别-第五周
本此详细学习了动态学习率的相关知识,通常采用基于epoch数值的方法。此外,还学习了保存模型和加载模型的方法。原创 2022-10-27 16:26:32 · 550 阅读 · 0 评论