C语言经典算法之Edmonds-Karp算法

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度

B.空间复杂度

C.总结

三 优缺点

A.优点:

B.缺点:

C.总结

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

Edmonds-Karp算法是求解网络流问题中的最大流的一种算法,它是Ford-Fulkerson方法的一个改进版本,通过使用BFS(广度优先搜索)而不是DFS(深度优先搜索)来寻找增广路径,以期更快地找到较短的增广路径,从而提高算法效率。

一 代码实现

 

#include <stdio.h>
#include <stdbool.h>
#include <limits.h>

// 假设已定义的数据结构 Edge 和 Graph,Edge 包含源节点、目标节点、容量和流量等信息
typedef struct Edge {
    int from, to;
    int capacity, flow;
} Edge;

typedef struct Graph {
    int V, E; // 顶点数和边数
    Edge *edges; // 边的数组
    bool *visited; // 访问标记数组
    // 可能还需要邻接列表或其他数据结构表示图
} Graph;

// 创建一个从 source 到 sink 的增广路径,并返回路径上的最大可增加流量
int bfs(Graph *g, int source, int sink) {
    int parent[g->V]; // 存储每个节点的父节点
    bool visited[g->V];

    // 初始化 BFS 队列以及访问标记
    for (int i = 0; i < g->V; ++i) {
        parent[i] = -1;
        visited[i] = false;
    }
    visited[source] = true;
    queue<int> q;
    q.push(source);

    while (!q.empty()) {
        int u = q.front();
        q.pop();

        for (int j = 0; j < g->E; ++j) {
            Edge &e = g->edges[j];
            if (e.capacity > e.flow && !visited[e.to]) {
                visited[e.to] = true;
                parent[e.to] = u;
                if (e.to == sink) return INT_MAX; // 找到到达汇点的路径,下一步计算增广量
                q.push(e.to);
            }
        }
    }

    return 0; // 如果找不到从source到sink的路径,则返回0
}

// 使用BFS进行增广并更新流值
int edmondsKarp(Graph *g, int source, int sink) {
    int maxFlow = 0;
    while (true) {
        int pathFlow = bfs(g, source, sink);
        if (pathFlow == 0) break; // 没有更多增广路径了

        // 更新沿增广路径的流值
        for (int v = sink; v != source; v = parent[v]) {
            int u = parent[v];
            for (int i = 0; i < g->E; ++i) {
                Edge &e = g->edges[i];
                if (e.from == u && e.to == v && e.capacity > e.flow) {
                    int delta = min(pathFlow, e.capacity - e.flow);
                    e.flow += delta;
                    g->edges[i ^ 1].flow -= delta; // 对应反向边减少流量
                    pathFlow -= delta;
                    if (pathFlow == 0) break; // 流量已全部分配
                }
            }
        }
        maxFlow += pathFlow;
    }
    return maxFlow;
}

// 初始化图和其他辅助函数在此省略...

int main() {
    // 初始化图、添加边、调用edmondsKarp函数计算最大流...
    Graph g = initializeGraph();
    int maxFlow = edmondsKarp(&g, SOURCE_VERTEX, SINK_VERTEX);
    printf("The maximum flow is: %d\n", maxFlow);
    return 0;
}

请注意上述代码仅作为示例框架,实际应用中需要根据具体需求完成图的初始化、边的添加、邻接表或邻接矩阵的实现以及其他必要的辅助函数。同时,代码中假设了一个双连通图模型,即每条边都有对应的反向边,且边数组里存储了成对出现的正向和反向边,因此在更新流值时用了i ^ 1来访问反向边。在实际编程中,可能需要根据实际情况调整数据结构和逻辑。

二 时空复杂度

Edmonds-Karp算法是解决网络流问题中的最大流问题的一种改进型算法,基于Ford-Fulkerson方法,并使用了广度优先搜索(BFS)来寻找增广路径。下面分析其时空复杂度:

A.时间复杂度

Edmonds-Karp算法的时间复杂度在最坏情况下为O(V^2 * E),其中V是图中顶点的数量,E是边的数量。

这是因为每次BFS最多会访问所有顶点,而每条边在找到一个最大流之前可能被考虑至多两次(一次正向,一次反向)。由于每次增广路径的长度至少增加1(因为BFS总是选择未探索过的较短路径),所以总共需要进行至多|V-1|次增广操作(从源到汇的最短路径长度不会超过V-1)。因此,在每次增广操作中检查所有的边,总的操作次数就是O(|V-1| * E)。但考虑到实际过程中可能会有重复的边被检查,且最坏情况下的路径长度可以接近于V,故综合起来时间复杂度为O(V^2 * E)

B.空间复杂度

空间复杂度主要取决于以下几部分:

  1. 存储图结构本身:如果是邻接矩阵表示,空间复杂度为O(V^2);如果是邻接表表示,则通常为O(VE)
  2. BFS过程中的队列和临时变量:用于存储待访问节点、已访问标记以及增广路径上的信息,空间复杂度为O(V)
  3. 其他辅助数据结构:如父节点数组等,也需要额外的空间,同样为O(V)

因此,Edmonds-Karp算法的空间复杂度大致为O(V + VE),其中较大的项取决于图的具体表示方式。

C.总结

尽管Edmonds-Karp算法相比简单的Ford-Fulkerson方法有所改进,它在某些特定类型的图上表现得更快,但在具有大量冗余路径或高直径的图上,其性能可能不如更高级的算法如Dinic算法或容量增量启发式算法。不过对于许多实际应用而言,Edmonds-Karp算法仍然足够有效且易于实现。

三 优缺点

A.优点:

  1. 更快的收敛速度:相较于Ford-Fulkerson算法使用深度优先搜索(DFS)寻找增广路径,Edmonds-Karp算法通过采用广度优先搜索(BFS)来找到较短的增广路径。在某些情况下,特别是当图中存在大量长度较短的增广路径时,该算法可以更快地达到最大流。

  2. 理论保证:虽然最坏情况下的时间复杂度仍是O(V^2 * E),但由于每次都在寻找更短的增广路径,它在实践中通常比仅依赖DFS的Ford-Fulkerson方法执行得更快。

  3. 易于理解和实现:相对于其他复杂度更低但实现难度更大的算法(如Dinic算法),Edmonds-Karp算法相对简单且直观,对初学者友好,容易在各种编程竞赛和学习环境中快速应用。

B.缺点:

  1. 效率局限性:尽管在部分实例中表现良好,但在含有大量冗余边或者直径较大的网络流问题中,Edmonds-Karp算法的性能不如一些更高级的算法。例如,在最坏的情况下,其时间复杂度较高,对于大型或稀疏图,可能会导致计算耗时较长。

  2. 不适用于极端情况:在存在特定构造的难解图上,Edmonds-Karp算法可能需要接近于其理论上的最坏时间复杂度才能解决问题,这使得它不适合用于解决规模非常大或对运行时间有严格要求的问题。

  3. 空间消耗:由于使用了BFS队列以及存储父节点信息等辅助数据结构,相比于单纯考虑图本身的数据结构,算法的空间复杂度会有所增加。

  4. 非最优解法:对于最小割问题,虽然可以通过求解最大流得到最小割大小,但Edmonds-Karp并不是专门针对最小割问题设计的最佳算法,比如Karger's algorithm家族中的随机化算法在最小割问题上有更好的平均时间复杂度保证。

C.总结

总结来说,Edmonds-Karp算法在处理许多实际问题时表现出较好的实用性与有效性,尤其是在较小到中等规模的网络流问题上;但对于大规模、高度复杂的网络流问题,或者对算法效率有极高要求的场景下,选择更先进的算法可能会获得更好的效果。

四 现实中的应用

Edmonds-Karp算法在现实中有广泛的应用,尤其是在需要解决网络流优化问题的场景中。以下是几个典型的应用领域:

  1. 交通运输规划

    • 在交通系统中,可以将道路看作是边,车辆或货物流量视为流,通过该算法可以确定如何分配资源以最大化整个系统的运输能力。
    • 例如,计算城市间物流最优路径、公交线路调度或高速公路容量的最大利用。
  2. 通信网络

    • 在电信和数据通信网络中,算法可用于设计最佳的数据传输路径,使得信息能够在带宽限制下高效地从源节点传输到目标节点。
    • 网络拥塞控制也可能利用最大流算法来平衡不同链路之间的流量分布,减少瓶颈并提高整体网络吞吐量。
  3. 水资源管理

    • 水库、河流和管道等水利设施组成的供水网络可以建模为图结构,通过求解最大流问题,可以找出在满足水源供应限制条件下向各个区域分配水量的最佳方案。
  4. 任务调度与分配

    • 在项目管理或生产计划中,多个任务需要在有限的资源(如工人、机器)约束下完成,可以将任务看成是顶点,资源分配视作边上的流,用Edmonds-Karp算法找到最优的任务分配方案。
  5. 电力电网分配

    • 电力网络中的输电线路有传输容量限制,算法可以帮助实现电力在发电站和负荷中心之间的有效分配,确保电网稳定运行且能源使用最优化。
  6. 计算机科学中的其他应用

    • 计算机图形学中的纹理映射和图像处理中的边界填充算法也可以利用最大流模型和类似Edmonds-Karp的算法来解决问题。
    • 在网络设计和路由算法中,最大流算法有助于在网络拥堵时重新分配数据包的路径,优化网络性能。
  • 25
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是基于Edmonds-Karp算法最大流问题C语言代码: ```c #include <stdio.h> #include <string.h> #include <limits.h> #define V 6 // 判断是否存在增广路径 int bfs(int rGraph[V][V], int s, int t, int parent[]) { // 创建标记数组,并初始化为false int visited[V]; memset(visited, 0, sizeof(visited)); // 创建队列,将源点加入队列 int queue[V]; int front = 0, rear = 0; queue[rear++] = s; visited[s] = 1; parent[s] = -1; // BFS搜索 while (front != rear) { int u = queue[front++]; for (int v = 0; v < V; v++) { if (!visited[v] && rGraph[u][v] > 0) { queue[rear++] = v; visited[v] = 1; parent[v] = u; } } } // 如果终点被标记,则存在增广路径 return (visited[t] == 1); } // 计算最大流 int fordFulkerson(int graph[V][V], int s, int t) { int u, v; // 创建剩余图,并初始化为原图 int rGraph[V][V]; for (u = 0; u < V; u++) { for (v = 0; v < V; v++) { rGraph[u][v] = graph[u][v]; } } // 创建父节点数组 int parent[V]; // 初始化最大流为0 int max_flow = 0; // 搜索增广路径,并将增广路径上的最小容量添加到最大流中 while (bfs(rGraph, s, t, parent)) { int path_flow = INT_MAX; for (v = t; v != s; v = parent[v]) { u = parent[v]; path_flow = path_flow < rGraph[u][v] ? path_flow : rGraph[u][v]; } for (v = t; v != s; v = parent[v]) { u = parent[v]; rGraph[u][v] -= path_flow; rGraph[v][u] += path_flow; } max_flow += path_flow; } // 返回最大流 return max_flow; } int main() { // 创建图 int graph[V][V] = { {0, 16, 13, 0, 0, 0}, {0, 0, 10, 12, 0, 0}, {0, 4, 0, 0, 14, 0}, {0, 0, 9, 0, 0, 20}, {0, 0, 0, 7, 0, 4}, {0, 0, 0, 0, 0, 0} }; // 设置源点和汇点 int s = 0, t = 5; // 计算最大流 printf("Max Flow: %d\n", fordFulkerson(graph, s, t)); return 0; } ``` 该代码实现了一个6个节点的最大流问题,其中源点为0,汇点为5。可以根据实际情况修改节点数、连通关系等参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值