目录
前言
A.建议:
1.学习算法最重要的是理解算法的每一步,而不是记住算法。
2.建议读者学习算法的时候,自己手动一步一步地运行算法。
B.简介:
高斯消元法是一种求解线性方程组的数值方法,通过一系列初等行变换将系数矩阵化简为阶梯形矩阵(或上三角矩阵),进而通过回代得到方程组的解。
一 代码实现
在C语言中实现高斯消元法时,通常涉及以下几个步骤:
输入/初始化
- 定义一个二维数组来存储增广矩阵,即包含系数矩阵和右侧常数项的矩阵。
- 读取用户输入的线性方程组的系数和常数项。
#include <stdio.h>
#define N 3 // 假设是3个未知数的方程组
double A[N+1][N+1]; // 增广矩阵
void inputMatrix() {
for (int i = 0; i < N; ++i) {
for (int j = 0; j <= N; ++j) {
printf("请输入第%d行第%d列的元素:", i + 1, j + 1);
scanf("%lf", &A[i][j]);
}
}
}
消元过程
- 针对每一步,选择当前列中绝对值最大的元素作为主元(也可以选择主元最大或最小且非零)。
- 如果主元不是该行第一列,则需要交换行以确保主元位于正确位置。
- 对于当前主元所在行以下的所有行,进行消元操作,将对应的列元素变为0。
void gaussElimination() {
for (int k = 0; k < N; ++k) {
// 寻找主元,并交换行(如果需要)
int maxIndex = k;
double maxValue = fabs(A[k][k]);
for (int i = k + 1; i < N; ++i) {
if (fabs(A[i][k]) > maxValue) {
maxIndex = i;
maxValue = fabs(A[i][k]);
}
}
if (maxIndex != k) {
for (int j