C语言经典算法之高斯消元法

本文详细介绍了高斯消元法的原理、C语言代码实现,分析了其时间复杂度和空间复杂度,并讨论了优缺点,特别强调了在现实世界中广泛的应用场景,如工程问题、电路分析和经济学建模等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

A.建议:

B.简介:

一 代码实现

二 现实中的应用

A.时间复杂度分析:

B.空间复杂度分析:

C.总结:

三  优缺点

A.优点:

B.缺点:

C.总结:

四 现实中的应用


前言

A.建议:

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介:

高斯消元法是一种求解线性方程组的数值方法,通过一系列初等行变换将系数矩阵化简为阶梯形矩阵(或上三角矩阵),进而通过回代得到方程组的解。

一 代码实现

在C语言中实现高斯消元法时,通常涉及以下几个步骤:

输入/初始化

  • 定义一个二维数组来存储增广矩阵,即包含系数矩阵和右侧常数项的矩阵。
  • 读取用户输入的线性方程组的系数和常数项。
#include <stdio.h>
#define N 3 // 假设是3个未知数的方程组
double A[N+1][N+1]; // 增广矩阵

void inputMatrix() {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j <= N; ++j) {
            printf("请输入第%d行第%d列的元素:", i + 1, j + 1);
            scanf("%lf", &A[i][j]);
        }
    }
}

消元过程

  • 针对每一步,选择当前列中绝对值最大的元素作为主元(也可以选择主元最大或最小且非零)。
  • 如果主元不是该行第一列,则需要交换行以确保主元位于正确位置。
  • 对于当前主元所在行以下的所有行,进行消元操作,将对应的列元素变为0。
void gaussElimination() {
    for (int k = 0; k < N; ++k) {
        // 寻找主元,并交换行(如果需要)
        int maxIndex = k;
        double maxValue = fabs(A[k][k]);
        for (int i = k + 1; i < N; ++i) {
            if (fabs(A[i][k]) > maxValue) {
                maxIndex = i;
                maxValue = fabs(A[i][k]);
            }
        }
        if (maxIndex != k) {
            for (int j 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值