C语言实现牛顿迭代法(Newton-Raphson Method)

目录

前言

A.建议

B.简介

一 代码实现

二 时空复杂度

A.时间复杂度

B.空间复杂度

C.总结

三 优缺点

A.优点:

B.缺点:

C.总结:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

牛顿迭代法(Newton-Raphson Method)是一种高效的数值方法,用于求解实数域或复数域上非线性方程 f(x)=0 的根。该方法基于函数 f在某一点x_k处的泰勒级数展开,并利用一阶导数 f′(x)近似地构造一条切线,通过切线与 xx-轴的交点来更新估计的根。迭代过程持续进行,直至达到预定的精度要求。

一 代码实现

以下是使用C语言实现牛顿迭代法的基本步骤和代码示例:

步骤一:定义目标函数 f(x) 和其导数 f′(x)

首先,你需要编写两个函数:一个表示目标非线性方程 f(x),另一个表示其导数 f′(x)。这两个函数应接受浮点数作为输入参数,并返回相应的浮点数结果。

// 目标函数 f(x)
float function_f(float x) {
    // 实现具体的非线性函数,例如:x^3 - ½ x - ⅓
    return pow(x, 3) - 0.5 * x - 1.0 / 3.0;
}

// 导数 f'(x)
float derivative_f(float x) {
    // 实现函数 f(x) 的一阶导数,例如:3x^2 - 0.5
    return 3 * pow(x, 2) - 0.5;
}

步骤二:实现牛顿迭代算法

接下来,编写一个主函数,其中包含牛顿迭代的核心逻辑。该函数通常接收以下参数:

  • 初始猜测值 x_initial
  • 目标精度 tolerance
  • 最大迭代次数 max_iterations(防止陷入无限循环)

在每次迭代中,按照牛顿迭代公式更新估计根:

同时检查是否达到终止条件(即误差小于给定的精度或达到最大迭代次数)。

#include <stdio.h>
#include <math.h>

#define MAX_ITERATIONS 1000
#define TOLERANCE 1e-6

// ... 上面定义的 function_f 和 derivative_f 函数 ...

void newton_raphson(float x_initial, float tolerance, int max_iterations) {
    float x_current = x_initial;
    float x_next;
    float error;

    int iteration_count = 0;

    while (iteration_count < max_iterations) {
        x_next = x_current - function_f(x_current) / derivative_f(x_current);
        error = fabs(x_next - x_current);

        if (error <= tolerance) {
            printf("Root found after %d iterations: %.6f\n", iteration_count + 1, x_next);
            break;
        }

        x_current = x_next;
        iteration_count++;
    }

    if (i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值