一些kaggle上训练自己的代码会遇到的小问题

文章讲述了如何处理PyTorch中CUDA内存不足的问题,方法包括清理无用变量、手动释放内存、调整BatchSize和简化模型,同时提醒需权衡内存释放对训练性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB (GPU 0; 14.76 GiB total capacity; 13.17 GiB already allocated; 343.75 MiB free; 13.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

-----------------------------------------------------------------------------------------------------------

这个错误提示表明你的PyTorch代码尝试在GPU上分配超过可用内存的数量,因此导致CUDA内存不足错误。释放不用的CUDA内存,以下几个方法:

1.清理不需要的变量和张量:


2.在每个训练步骤的末尾,手动删除不再需要的中间变量和张量。使用del语句可以实现这一点。

   del variable_name


3.手动释放GPU内存:


4.使用torch.cuda.empty_cache()手动释放PyTorch占用的GPU内存。这可以在训练循环的适当位置调用。

   torch.cuda.empty_cache()


5.降低Batch Size:


6.减小训练时的批处理大小,因为较小的批处理会占用更少的内存。


7.模型简化:


8.如果模型过于复杂,考虑简化模型结构以减少内存占用。

请注意,这些方法可能会对训练过程产生一定的影响,特别是手动释放内存可能会导致训练速度略有下降。在使用这些方法时,建议进行一些实验以找到最佳的平衡点。此外,确保在训练循环中使用torch.cuda.empty_cache()的地方不会过于频繁,以免影响训练性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值