1.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB (GPU 0; 14.76 GiB total capacity; 13.17 GiB already allocated; 343.75 MiB free; 13.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
-----------------------------------------------------------------------------------------------------------
这个错误提示表明你的PyTorch代码尝试在GPU上分配超过可用内存的数量,因此导致CUDA内存不足错误。释放不用的CUDA内存,以下几个方法:
1.清理不需要的变量和张量:
2.在每个训练步骤的末尾,手动删除不再需要的中间变量和张量。使用del语句可以实现这一点。
del variable_name
3.手动释放GPU内存:
4.使用torch.cuda.empty_cache()手动释放PyTorch占用的GPU内存。这可以在训练循环的适当位置调用。
torch.cuda.empty_cache()
5.降低Batch Size:
6.减小训练时的批处理大小,因为较小的批处理会占用更少的内存。
7.模型简化:
8.如果模型过于复杂,考虑简化模型结构以减少内存占用。
请注意,这些方法可能会对训练过程产生一定的影响,特别是手动释放内存可能会导致训练速度略有下降。在使用这些方法时,建议进行一些实验以找到最佳的平衡点。此外,确保在训练循环中使用torch.cuda.empty_cache()的地方不会过于频繁,以免影响训练性能。