《Exploiting Fine-Grained Face Forgery Clues via Progressive Enhancement Learning》

2022AAAI

目的:虽然现阶段大多数方法,会采用频域信息,但是使用的频域信息确实粗粒度的,故作者提出了增量学习,去捕捉细粒度的伪造痕迹

模型的整体框架:

1.细粒度的频域信息

通过8*8的卷积块对图像进行DCT变换,再进行IDCT变换得到频域信息

为了能够捕捉跟全面的信息,作者采用4种不同频段的频域,分别是low、mid、high和all

再通过1*1的卷积将这几种结合再一块

2.自增强模块

其中包括噪声增强和自注意力机制

通过中值滤波过滤掉椒盐噪声,因为噪声增强仅考虑的是各自通道的噪声,故作者提出自注意力机制实现噪声增强间的交互

sigmod放大细微的噪声

最后的噪声输出

3.交互增强模块

将来着不同的模态流的数据进行融合

4.实验结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值