13.Pow(x, n)

 这是第13篇算法,力扣链接

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3
输出:9.26100

示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

 这道题最先想到的是暴力求解,但是n的取值范围是-2^{31} <= n <= 2^{31}-1,显然暴力一定会超时或者不是最优解。

那优先会想到优化方案就是二分法,分而治之来减少遍历的次数,比如4^{2}可以拆成2^{2}*2^{2},当然,可以在拆。

二分法有两种思路,一种是迭代,一种是递归,但是不管是迭代还是递归他们的调用逻辑都是一样的,分开处理正负的场景。

func myPow(x float64, n int) float64 {  
    if n < 0 {  
       x = 1 / x  
       return doPow(x, -n)  
    } else {  
       return doPow(x, n)  
    }  
}  

在doPow里面有着不同的实现。这里的根本逻辑是区分奇偶,偶数场景很简单,取余后为0,则返回half*half的值,而奇数场景可能多了个x,即half*half*x

方法一:递归实现

func myPow(x float64, n int) float64 {  
    if n < 0 {  
       x = 1 / x  
       return doPow(x, -n)  
    } else {  
       return doPow(x, n)  
    }  
}  
  
func doPow1(x float64, n int) float64 {  
    if n == 0 {  
       return 1  
    }  
    half := doPow1(x, n/2)  
    if n%2 != 0 {  
       return half * half * x  
    } else {  
       return half * half  
    }  
}

方法二:迭代实现

func myPow(x float64, n int) float64 {  
    if n < 0 {  
       x = 1 / x  
       return doPow(x, -n)  
    } else {  
       return doPow(x, n)  
    }  
}

func doPow(x float64, n int) float64 {  
    result := 1.0  
    calculate := x  
    for n > 0 {  
       if n%2 == 1 {  
          result *= calculate  
       }  
       calculate *= calculate  
       n /= 2  
    }  
    return result  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值