TensorDataset

本文介绍了PyTorch中的TensorDataset,它是一个用于打包张量形成数据集的工具,常用于整合输入特征和标签。它便于与DataLoader协作,支持数据预处理操作。通过索引,用户可以方便地访问数据集中的样本数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        可以用来对 tensor 进行打包,就好像 python 中的 zip 功能。

        是 PyTorch 提供的一个用于将张量(tensor)组合成数据集的工具类。它的作用是将多个张量作为输入,构建一个能够以样本对的形式提供数据的数据集。

        通常情况下,我们会使用 TensorDataset 将输入数据(如特征张量)和标签数据(如目标张量)组合成一个数据集。然后,我们可以将这个数据集传递给 PyTorch 的数据加载器(如 DataLoader)用于训练模型。

        使用 TensorDataset 的好处之一是它可以方便地与 PyTorch 的数据加载器一起使用,从而可以利用 PyTorch 提供的各种功能来对数据进行批处理、随机化、并行加载等操作。

        例如:

data_set = TensorDataset(
        torch.tensor(user, dtype=torch.int64),
        torch.tensor(item, dtype=torch.int64),
        knowledge_emb,
        torch.tensor(score, dtype=torch.float32)
    )

        当你想要调用其中的一部分数据时,可通过索引来访问 data_set 中的每个样本,然后使用类似列表索引的方式来获取对应的数据。

例如,如果你想获取data_set中第一个样本的用户、题目和得分,可以这样做:

sample = data_set[0] 
user = sample[0] 
item = sample[1] 
knowledge_emb = sample[2] 
score = sample[3]

        这里的 useritemknowledge_embscore 分别表示第一个样本的用户、题目、知识点编码和得分。data_set[0]中存储了user/item/knowledge_emb/score的首位。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值