华里士公式(点火公式)

对于I_n=\int_{0}^{\frac{\pi}{2}}sin^nxdx类型的积分

n=1时,

I_1=\int_0^{\frac{\pi}{2}}sinxdx=-cosx|_{0}^{\frac{\pi}{2}}=0-(-1)=1

n=2时,

I_2=\int_0^{\frac{\pi}{2}}sin^2xdx=\int_0^{\frac{\pi}{2}}\frac{1-cos2x}{2}dx=\int_0^{\frac{\pi}{2}}\frac{1}{2}dx=\frac{\pi}{4}

当n很大时,再去计算就会变得很麻烦,不过,观察到对于更大的n,有如下规律:

I_n=\int_{0}^{\frac{\pi}{2}}sin^nxdx=\int_0^{\frac{\pi}{2}}sin^{n-2}xdx-\int_0^{\frac{\pi}{2}}sin^{n-2}xcos^2xdx

\int_{0}^{\frac{\pi}{2}}sin^{n-2}xcos^2xdx=\int_{0}^{\frac{\pi}{2}}sin^{n-2}xcosxd(sinx)

=\frac{1}{n-1}sin^{n-1}xcosx|_0^{\frac{\pi}{2}}+\int_0^{\frac{\pi}{2}}\frac{1}{n-1}sin^nxdx=\frac{1}{n-1}I_n

于是,I_n=I_{n-2}+\frac{1}{n-1}I_n

因此I_n=\frac{n-1}{n}I_{n-2}

因此,对于I_n,n为奇数时

I_n=\frac{(n-1)!!}{(n)!!}

对于I_n,n为偶数时

I_n=\frac{(n-1)!!}{(n)!!}\frac{\pi}{2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值