sinx/x在0到无穷积分的条件收敛证明

广义积分I=\int_{0}^{\infty } \frac{sinx}{x} dx的敛散性判断

1.I是条件收敛的,证明如下:

        首先,可以I可以拆成两部分,分别说明敛散性

I=\int_{0}^{\infty } \frac{sinx}{x} dx=\int_{0}^{\pi/2 } \frac{sinx}{x} dx+\int_{\pi/2}^{\infty } \frac{sinx}{x} dx

I_1=\int_{0}^{\pi/2 } \frac{sinx}{x} dxI_2=\int_{\pi/2}^{\infty } \frac{sinx}{x} dx

        由重要极限可以知道\lim_{x \to 0} \frac{sinx}{x}=1,所以I_1明显不是一个广义积分,它的值是有限的,很显然的是在0到\frac{\pi}{2}上,x始终大于sinx(可以用导数证明),所以x/sinx<1,即

I_1=\int_{0}^{\pi/2 } \frac{sinx}{x} dx<\int_{0}^{\pi/2 } dx<\frac{\pi}{2}

        现在只需说明I_2也是收敛的,即可证明整个积分收敛,证明如下:

I_2=\int_{\pi/2}^{\infty } \frac{sinx}{x} dx = -\int_{\pi/2}^{\infty } \frac{1}{x} dcosx=[-\frac{cosx}{x}]_{x=\infty}-[-\frac{cosx}{x}]_{x=\pi/2}+\int_{\pi/2}^{\infty } \frac{cosx}{x^2} dx=\int_{\pi/2}^{\infty } \frac{cosx}{x^2} dx

        很显然的是:

\int_{\pi/2}^{\infty } \frac{cosx}{x^2} dx<\int_{\pi/2}^{\infty } \frac{1}{x^2} dx,右边的级数是收敛的,所以对于I_2也是收敛的,两个积分都是收敛的,所以整个积分是收敛的。

        这一步,我们证明了它的条件收敛性。

2.I不是绝对收敛的,证明如下:

        同样的,先需要拆为两部分,

I^{'}=\int_{0}^{\infty } \frac{|sinx|}{x} dx=\int_{0}^{\pi/2 } \frac{|sinx|}{x} dx+\int_{\pi/2}^{\infty } \frac{|sinx|}{x} dx

        第一部分\int_{0}^{\pi/2 } \frac{|sinx|}{x} dx与前文一致,是有限的

        对于第二部分,我们有:

\int_{\pi/2}^{\infty } \frac{|sinx|}{x} dx>\int_{\pi/2}^{\infty } \frac{sin^2x}{x} dx=\int_{\pi/2}^{\infty } \frac{1-cos2x}{2x} dx=\int_{\pi/2}^{\infty } \frac{1}{2x} dx-\int_{\pi/2}^{\infty } \frac{cos2x}{2x} dx

        这里有\int_{\pi/2}^{\infty } \frac{1}{2x} dx是发散的,而\int_{\pi/2}^{\infty } \frac{cos2x}{2x} dx是收敛的(上同)

        所以根据比较判别法可以知道,加了绝对值之后这个积分是发散的,原广义积分不是绝对收敛的。

        综上,广义积分I=\int_{0}^{\infty } \frac{sinx}{x} dx是条件收敛的

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值