sinx/x在0到无穷积分的条件收敛证明

广义积分I=\int_{0}^{\infty } \frac{sinx}{x} dx的敛散性判断

1.I是条件收敛的,证明如下:

        首先,可以I可以拆成两部分,分别说明敛散性

I=\int_{0}^{\infty } \frac{sinx}{x} dx=\int_{0}^{\pi/2 } \frac{sinx}{x} dx+\int_{\pi/2}^{\infty } \frac{sinx}{x} dx

I_1=\int_{0}^{\pi/2 } \frac{sinx}{x} dxI_2=\int_{\pi/2}^{\infty } \frac{sinx}{x} dx

        由重要极限可以知道\lim_{x \to 0} \frac{sinx}{x}=1,所以I_1明显不是一个广义积分,它的值是有限的,很显然的是在0到\frac{\pi}{2}上,x始终大于sinx(可以用导数证明),所以x/sinx<1,即

I_1=\int_{0}^{\pi/2 } \frac{sinx}{x} dx<\int_{0}^{\pi/2 } dx<\frac{\pi}{2}

        现在只需说明I_2也是收敛的,即可证明整个积分收敛,证明如下:

I_2=\int_{\pi/2}^{\infty } \frac{sinx}{x} dx = -\int_{\pi/2}^{\infty } \frac{1}{x} dcosx=[-\frac{cosx}{x}]_{x=\infty}-[-\frac{cosx}{x}]_{x=\pi/2}+\int_{\pi/2}^{\infty } \frac{cosx}{x^2} dx=\int_{\pi/2}^{\infty } \frac{cosx}{x^2} dx

        很显然的是:

\int_{\pi/2}^{\infty } \frac{cosx}{x^2} dx<\int_{\pi/2}^{\infty } \frac{1}{x^2} dx,右边的级数是收敛的,所以对于I_2也是收敛的,两个积分都是收敛的,所以整个积分是收敛的。

        这一步,我们证明了它的条件收敛性。

2.I不是绝对收敛的,证明如下:

        同样的,先需要拆为两部分,

I^{'}=\int_{0}^{\infty } \frac{|sinx|}{x} dx=\int_{0}^{\pi/2 } \frac{|sinx|}{x} dx+\int_{\pi/2}^{\infty } \frac{|sinx|}{x} dx

        第一部分\int_{0}^{\pi/2 } \frac{|sinx|}{x} dx与前文一致,是有限的

        对于第二部分,我们有:

\int_{\pi/2}^{\infty } \frac{|sinx|}{x} dx>\int_{\pi/2}^{\infty } \frac{sin^2x}{x} dx=\int_{\pi/2}^{\infty } \frac{1-cos2x}{2x} dx=\int_{\pi/2}^{\infty } \frac{1}{2x} dx-\int_{\pi/2}^{\infty } \frac{cos2x}{2x} dx

        这里有\int_{\pi/2}^{\infty } \frac{1}{2x} dx是发散的,而\int_{\pi/2}^{\infty } \frac{cos2x}{2x} dx是收敛的(上同)

        所以根据比较判别法可以知道,加了绝对值之后这个积分是发散的,原广义积分不是绝对收敛的。

        综上,广义积分I=\int_{0}^{\infty } \frac{sinx}{x} dx是条件收敛的

在MATLAB中,我们可以使用龙贝格积分(也称为龙贝格-舒尔茨积分法)来提高数值积分的精度。这是一种变型的矩形法则,用于减少积分的误差。以下是实现在MATLAB中实现龙贝格积分,并用`sin(x)/x`在0到1之间的积分进行检验的一个例子: 首先,我们需要编写一个自适应龙贝格积分函数,这里假设我们已经实现了基本的龙贝格积分部分: ```Matlab function integralApproximation = adaptativeRomberg(f, a, b, tol) function integrand(x) return f(x) ./ x; end m = 1; % 初始矩形宽度 summands = [0]; % 记录每个阶段的累积积分 errorEstimate = Inf; % 初始误差估计设为无穷大 while errorEstimate > tol intervalSum = 0; for i = 1:2^(m-1) intervalWidth = m * m! / (2^(m+1) * i * (i+1) * (2*m-i+1)); intervalSum = intervalSum + intervalWidth * integrand((i-0.5)*m); end currentSummand = 0.5 * intervalSum; summands = [summands; currentSummand]; errorEstimate = sqrt(summands(end-1) * summands(end)); m = m + 1; end integralApproximation = summands(end); end % 测试 sin(x)/x 的积分 function = sineDividedByX(x); integralApproximation = adaptativeRomberg(@function, 0, 1, 1e-6); fprintf('The approximate integral of sin(x)/x from 0 to 1 is: %.16f\n', integralApproximation); ``` 在这个代码里,我们定义了一个嵌套函数`integrand`来处理分母,然后使用龙贝格积分算法进行计算。我们将`tol`设置为一个较小的值(如1e-6),表示我们希望达到的精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值