实验内容
1、用Cyrus-Beck算法进行给定直线的裁剪
2、用梁友栋-Barsky算法进行给定直线的裁剪
实验代码
1、用Cyrus-Beck算法进行给定直线的裁剪
//Cyrus-Beck算法
import java.awt.*;
import java.applet.Applet;
public class CyrusBeck extends Applet{
double ts = 0, te = 1;
public void paint(Graphics g) {
// 绘制裁剪窗口
g.setColor(Color.pink);
int[] xPoints = {200, 84, 318};
int[] yPoints = {275, 100, 100};
g.drawPolygon(xPoints, yPoints, 3);
// 绘制被裁剪直线
g.setColor(Color.blue);
g.drawLine(0, 120, 400, 120);
g.drawLine(0, 180, 400, 180);
// 进行裁剪
double[][] A = {{200, 275}, {84+1/3, 100}, {318+2/3, 100}};
// 计算法向量数组N
double[][] N = new double[3][2];
for (int i = 0; i < 3; i++) {
int next = (i + 1) % 3;
double dx = A[next][0] - A[i][0];
double dy = A[next][1] - A[i][1];
N[i][0] = -dy;
N[i][1] = dx;
}
double[] x = {0, 400};
double[] y1 = {120, 120};
double[] y2 = {180, 180};
g.setColor(Color.orange);
Cyrus_Beck(g, A, N, x, y1, ts, te);
g.setColor(Color.black);
Cyrus_Beck(g, A, N, x, y2, ts, te);
}
public void Cyrus_Beck(Graphics g, double[][] A, double[][] N, double[] x, double[] y, double ts, double te) {
boolean draw = true;
int i;
double t, dn, nw;
for (i = 0; i < 3; i++) {
dn = N[i][0] * (x[1] - x[0]) + N[i][1] * (y[1] - y[0]);
nw = N[i][0] * (x[0] - A[i][0]) + N[i][1] * (y[0] - A[i][1]);
t = -nw / dn;
if (dn < 0) {
if (t < te) te = t;
} else if (t > ts) ts = t;
if (ts > te) draw = false;
}
if (draw) {
double xs = (x[1] - x[0]) * ts + x[0];
double ys = (y[1] - y[0]) * ts + y[0];
double xe = (x[1] - x[0]) * te + x[0];
double ye = (y[1] - y[0]) * te + y[0];
g.drawLine((int) xs, (int) ys, (int) xe, (int) ye);
}
}
}
2、用梁友栋-Barsky算法进行给定直线的裁剪
//梁友栋-Barsky算法
import javax.swing.*;//引入swing包
import java.awt.*;//引入图形软件包awt
class Liang_Barsky extends JPanel {
double xL = 100, xR = 200, yT = 200, yB = 100; //矩形的边所对应的两个x,y坐标
boolean visible;
double[] x = {100, 300};
double[] y = {50, 200};
double ts = 0, te = 1;
public boolean Liang_Barsky(double[] x, double[] y) {
visible = false;
double dx, dy;
dx = x[1] - x[0];
dy = y[1] - y[0];
if (clipt(-dx, x[0] - xL))
if (clipt(dx, xR - x[0]))
if (clipt(-dy, y[0] - yB))
if (clipt(dy, yT - y[0]))
visible = true;
return visible;
}
public boolean clipt(double r, double s) {
double t;
this.ts=ts;
this.te=te;
if (r < 0) {
t = s / r;
if (t > te) return false;
else if (t > ts) ts = t;
}
else if (r > 0) {
t = s / r;
if (t < ts) return false;
else if (t < te) te = t;
}
else if (s < 0) return false;
return true;
}
public void paintComponent(Graphics g) {
g.setColor(Color.blue); //设置绘图颜色
drawLine(g, (int) xL, (int) yT, (int) xL, (int) yB);//绘制裁剪窗口
drawLine(g, (int) xL, (int) yT, (int) xR, (int) yT);
drawLine(g, (int) xL, (int) yB, (int) xR, (int) yB);
drawLine(g, (int) xR, (int) yT, (int) xR, (int) yB);
g.setColor(Color.red); //设置绘图颜色
drawLine(g, (int) x[0], (int) y[0], (int) x[1], (int) y[1]);//绘制裁剪前直线
if (Liang_Barsky(x, y)) {
g.setColor(Color.black); //设置绘图颜色
double x1 = x[0] + ts * (x[1] - x[0]);
double y1 = y[0] + ts * (y[1] - y[0]);
double x2 = x[0] + te * (x[1] - x[0]);
double y2 = y[0] + te * (y[1] - y[0]);
drawLine(g, (int) x1, (int) y1, (int) x2, (int) y2);//绘制裁剪后直线
}
}
void drawLine(Graphics g, int x1, int y1, int x2, int y2) {
g.drawLine(x1, y1, x2, y2);
}
}
运行结果
1、Cyrus-Beck算法运行结果
2、梁友栋-Barsky算法运行结果
梁友栋-Barsky裁减算法,过几天补充!
梁友栋-Barsky裁减算法已补充。//2023.6.2