数学思想概论期末

al.如何证明自然数和有理数之间存在有一一对应关系

把所有有理数写成最简分数的形式,根据分子( N N N)和分母( D D D)的值把它们排列成二维的阵列,然后从1/1出发沿对角线方向蛇形遍历所有的数。第 i i i个遍历到的数与自然数 i i i对应,则有理数集与自然数集有了一一对应的关系。
N ╲ D 1 − 1 2 − 2 3 − 3 4 − 4 5 − 5 6 − 6 1 1 1 → − 1 1 1 2 → − 1 2 1 3 → − 1 3 1 4 → − 1 4 1 5 → − 1 5 1 6 → − 1 6 ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ 2 2 1 − 2 1 2 2 − 2 2 2 3 − 2 3 2 4 − 2 4 2 5 − 2 5 2 6 − 2 6 ↓ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ 3 3 1 − 3 1 3 2 − 3 2 3 3 − 3 3 3 4 − 3 4 3 5 − 3 5 3 6 − 3 6 ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ 4 4 1 − 4 1 4 2 − 4 2 4 3 − 4 3 4 4 − 4 4 4 5 − 4 5 4 6 − 4 6 ↓ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ 5 5 1 − 5 1 5 2 − 5 2 5 3 − 5 3 5 4 − 5 4 5 5 − 5 5 5 6 − 5 6 ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗ 6 6 1 − 6 1 6 2 − 6 2 6 3 − 6 3 6 4 − 6 4 6 5 − 6 5 6 6 − 6 6 \begin{array}{c|crcrcrcrcrcrcrcrcrcrcrcr} {_{N}╲^{D}}&{1}&{}&{-1}&{}&{2}&{}&{-2}&{}&{3}&{}&{-3}&{}&{4}&{}&{-4}&{}&{5}&{}&{-5}&{}&{6}&{}&{-6}&{}\\ \hline {}\\ {1}&{\frac{1}{1}}&{→}&{-\frac{1}{1}}&{}&{\frac{1}{2}}&{→}&{-\frac{1}{2}}&{}&{\frac{1}{3}}&{→}&{-\frac{1}{3}}&{}&{\frac{1}{4}}&{→}&{-\frac{1}{4}}&{}&{\frac{1}{5}}&{→}&{-\frac{1}{5}}&{}&{\frac{1}{6}}&{→}&{-\frac{1}{6}}&{}\\ {}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}\\ {2}&{\frac{2}{1}}&{}&{-\frac{2}{1}}&{}&{\frac{2}{2}}&{}&{-\frac{2}{2}}&{}&{\frac{2}{3}}&{}&{-\frac{2}{3}}&{}&{\frac{2}{4}}&{}&{-\frac{2}{4}}&{}&{\frac{2}{5}}&{}&{-\frac{2}{5}}&{}&{\frac{2}{6}}&{}&{-\frac{2}{6}}&{}\\ {}&{↓}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}\\ {3}&{\frac{3}{1}}&{}&{-\frac{3}{1}}&{}&{\frac{3}{2}}&{}&{-\frac{3}{2}}&{}&{\frac{3}{3}}&{}&{-\frac{3}{3}}&{}&{\frac{3}{4}}&{}&{-\frac{3}{4}}&{}&{\frac{3}{5}}&{}&{-\frac{3}{5}}&{}&{\frac{3}{6}}&{}&{-\frac{3}{6}}&{}\\ {}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}\\ {4}&{\frac{4}{1}}&{}&{-\frac{4}{1}}&{}&{\frac{4}{2}}&{}&{-\frac{4}{2}}&{}&{\frac{4}{3}}&{}&{-\frac{4}{3}}&{}&{\frac{4}{4}}&{}&{-\frac{4}{4}}&{}&{\frac{4}{5}}&{}&{-\frac{4}{5}}&{}&{\frac{4}{6}}&{}&{-\frac{4}{6}}&{}\\ {}&{↓}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}\\ {5}&{\frac{5}{1}}&{}&{-\frac{5}{1}}&{}&{\frac{5}{2}}&{}&{-\frac{5}{2}}&{}&{\frac{5}{3}}&{}&{-\frac{5}{3}}&{}&{\frac{5}{4}}&{}&{-\frac{5}{4}}&{}&{\frac{5}{5}}&{}&{-\frac{5}{5}}&{}&{\frac{5}{6}}&{}&{-\frac{5}{6}}&{}\\ {}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}&{}&{↙}&{}&{↗}\\ {6}&{\frac{6}{1}}&{}&{-\frac{6}{1}}&{}&{\frac{6}{2}}&{}&{-\frac{6}{2}}&{}&{\frac{6}{3}}&{}&{-\frac{6}{3}}&{}&{\frac{6}{4}}&{}&{-\frac{6}{4}}&{}&{\frac{6}{5}}&{}&{-\frac{6}{5}}&{}&{\frac{6}{6}}&{}&{-\frac{6}{6}}&{}\\ \end{array} ND123456111121314151611112131415162212223242526221222324252633132333435363313233343536441424344454644142434445465515253545556551525354555666162636465666616263646566

b.数字“7”和“12”是人类来制定历法的科学活动中常常使用的数字,请结合“数学思想概论”课程内容,就两个数字的历史由来给出描述。

公历起源于古罗马历法,最早的时候只有十个月。古罗马皇帝决定增加两个月放在年尾,后来凯撒大帝把这两个月移到年初,成为一月和二月,原来的一月和二月便成了三月和四月,依次类推。在凯撒遇刺后,罗马的将军马克 ⋅ \cdot 安东尼建议将凯撒诞生的七月用他的名字命名,而他的继任者奥古斯都也以自己的名字命名了八月。

无论是东方还是西方,对于一年的十二个月,都是通过观察月相得来的,一年有十二次满月,既对应着西方传统天文/占星术里的“黄道十二宫”,又对应着我国干支纪年法的十二地支。

而一周七天,则是代表月相变化更为细微的周期:上弦月至满月需要七天的时间;满月至下弦月也需要七天的时间;由下弦月至新月,由新月又至上弦月各又需要七天。由此在最早的苏美尔人的历法中,一周被确定为七天,并分别用七位星神的名字为其命名。后来经由基督教的重新宣传推广,逐渐演变成世界范围内通用的历法。

以上便是数字“7”和“12”在人类历法当中的历史由来。

c.请证明有理数定义中给出的分数都可以化为有限小数或者无限循环小数,同时有限小数或者无限循环小数又都可以化为分数。

往证:一个实数 α ( 0 ≤ α < 1 ) \alpha(0\leq\alpha<1) α(0α1)可写为有限小数当且仅当 α \alpha α是有理数,且可以写为 α = r s \alpha=\frac{r}{s} α=sr,其中 0 ≤ r < s 0\leq{r}<s 0rs,且 s s s的任意素因子都整除10。

α \alpha α可写为一个有限的小数 α = ( . c 1 c 2 ⋯ c n ) \alpha=(.{c_1}{c_2}\cdots{c_n}) α=(.c1c2cn),那么
α = c 1 10 + c 2 1 0 2 + ⋯ + c n 1 0 n = c 1 b n − 1 + c 2 b n − 2 + ⋯ + c n b n \alpha=\frac{c_1}{10}+\frac{c_2}{10^2}+\cdots+\frac{c_n}{10^n}=\frac{c_1b^{n-1}+c_2b^{n-2}+\cdots+c_n}{b^n} α=10c1+102c2++10ncn=bnc1bn1+c2bn2++cn
所以 α \alpha α为有理数,而且可以写为分母仅能被 2 2 2 5 5 5整除的分数形式。

反过来,设 0 ≤ α < 1 0\leq\alpha<1 0α1,且 α = r s \alpha=\frac{r}{s} α=sr s s s的任意素因子都整除 10 10 10。因此存在 1 0 N 10^N 10N能被 s s s整除(例如,取 N N N s s s的素幂因子分解中指数最大的那个),那么 b N α = b N ⋅ r s = a r b^N\alpha=b^N\cdot\frac{r}{s}=ar bNα=bNsr=ar,其中, s a = b N sa=b^N sa=bN a a a为一正整数,因为 s ∣ b N s|b^N sbN,现在设 ( a m a m − 1 ⋯ a 1 a 0 ) (a_{m}a_{m-1}\cdots a_{1}a_{0}) (amam1a1a0) a r ar ar的小数表示,则
α = a r b N = a m b m + a m − 1 b m − 1 + ⋯ + a 1 b + a 0 b N = a m b m − N + a m − 1 b m − 1 − N + ⋯ + a 1 b 1 − N + a 0 b − N = ( . 00 ⋯ a m a m − 1 ⋯ a 1 a 0 ) \begin{array}{ll} \alpha&=\frac{ar}{b^N}=\frac{a_{m}b^{m}+a_{m-1}b^{m-1}+\cdots+a_1b+a_0}{b^N}\\ &=a_{m}b^{m-N}+a_{m-1}b^{m-1-N}+\cdots+a_1b^{1-N}+a_0b^{-N}\\ &=(.00\cdots a_{m}a_{m-1}\cdots a_1a_0)\\ \end{array} α=bNar=bNambm+am1bm1++a1b+a0=ambmN+am1bm1N++a1b1N+a0bN=(.00amam1a1a0)

因此, α \alpha α可以写为有限小数。

注意到任意有限小数可以写为在尾部全部添加数字 9 9 9的无限循环小数,这是因为:
( . c 1 c 2 ⋯ c m ) = ( . c 1 c 2 ⋯ c m − 1 b − 1 b − 1 ⋯   ) (.c_1c_2\cdots{c_m})=(.c_{1}c_{2}\cdots c_m-1\quad b-1\quad b-1\cdots) (.c1c2cm)=(.c1c2cm1b1b1)
例如: ( . 12 ) = ( . 11999 ⋯   ) (.12)=(.11999\cdots) (.12)=(.11999)

往证:一个实数 α ( 0 ≤ α < 1 ) \alpha(0\leq\alpha<1) α(0α1)可写为无限循环小数当且仅当 α \alpha α是有理数,且可以写为 α = r s \alpha=\frac{r}{s} α=sr,其中 0 ≤ r < s 0\leq{r}<s 0rs,且 s s s的任意素因子都整除10。

α \alpha α可写为一个无限循环小数,则
α = ( . c 1 c 2 ⋯ c N    c N + 1 ⋯ c N + k ‾ ) = c 1 10 + c 2 1 0 2 + ⋯ + c N 1 0 N + ( ∑ j = 0 ∞ 1 1 0 j k ) ( c N + 1 1 0 N + 1 + ⋯ + C N + K 1 0 N + k ) = c 1 10 + c 2 1 0 2 + ⋯ + c N 1 0 N + ( 1 0 k 1 0 k − 1 ) ( c N + 1 1 0 N + 1 + ⋯ + C N + K 1 0 N + k ) \begin{array}{ll} \alpha&=(.c_{1}c_{2}\cdots c_{N}\;\overline{c_{N+1}\cdots c_{N+k}})\\ &=\frac{c_{1}}{10}+\frac{c_{2}}{10^2}+\cdots+\frac{c_N}{10^N}+(\sum_{j=0}^{\infty}\frac{1}{10^{jk}})(\frac{c_{N+1}}{10^{N+1}}+\cdots+\frac{C_{N+K}}{10^{N+k}})\\ &=\frac{c_{1}}{10}+\frac{c_{2}}{10^2}+\cdots+\frac{c_N}{10^N}+(\frac{10^k}{10^k-1})(\frac{c_{N+1}}{10^{N+1}}+\cdots+\frac{C_{N+K}}{10^{N+k}})\\ \end{array} α=(.c1c2cNcN+1cN+k)=10c1+102c2++10NcN+(j=010jk1)(10N+1cN+1++10N+kCN+K)=10c1+102c2++10NcN+(10k110k)(10N+1cN+1++10N+kCN+K)
因为 α \alpha α是有理数之和,所以其为有理数。用同样方法易证 α \alpha α可以写为无限循环小数。

d.牛顿和莱布尼茨几乎同时发现了微积分,然而他们对微积分的阐述却有所不同,
1)试就这一历史过程进行描述;

牛顿最早在1666年写下一篇关于他称为“流数术”的数学技巧研究的短文,但并未公开发表。而莱布尼茨在1675年发现了微积分,并最早在1684年公开发表他对于微分的研究,1686年发表关于积分的研究。而直到1704年,牛顿才在他作品的附录中完整发表了“流数术”。这导致了学界对于两人究竟谁才是微积分的发明者爆发了漫长的争论。

2)结合自己的高等数学知识,探讨牛顿和莱布尼茨对微积分阐述的不同之处。

莱布尼茨和牛顿是从不同的思路创建微积分的:牛顿是为解决运动问题,先有导数概念,后有积分概念;莱布尼茨则反过来,受其哲学思想的影响,先有积分概念,后有导数概念。牛顿仅仅是把微积分当做物理研究的数学工具,而莱布尼茨则意识到了微积分在数学当中的重要作用。

从数学定义的角度看,函数的微分 d y dy dy与自变量的微分 d x dx dx之商等于该函数的导数,即
d y d x = f ′ ( x ) \frac{dy}{dx}=f\prime(x) dxdy=f(x)
同时,在 f ( x ) ≠ 0 f(x)\neq0 f(x)=0的条件下,以微分 d y = f ′ ( x 0 ) Δ x dy=f\prime(x_0)\Delta x dy=f(x0)Δx近似代替增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)时,其误差为 o ( d y ) o(dy) o(dy)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值