4.1
(a)
(c)是的。第一个表达式 8(t-a)表示脉冲位于 t =a。第二个表达式 6(a- t)表示脉冲位于 a=t,这当然是一回事。
4.2 暂无
4.3
(a) 根据一维连续卷积的定义,公式(4-24)、
其中第二行直接源于脉冲的筛分特性,即式(4-13)。由于左侧函数的参数不同,明确显示函数及其参数比将它们合并为式(4-24)的形式更清晰。我们将在必要时使用上述更明确的符号,以提高清晰度。
4.4
两个一维连续函数的卷积由公式 (4-24) 定义:
如问题 4.3 所述,为了更加清晰,我们在某些解法中使用了等价符号 f(t)*h(t),而不是 (f *h)(t)。
首先考虑位于原点的脉冲: 位于原点的一维脉冲的筛分特性由式(4-11)定义:
如果我们让第一个表达式中的 h(t)= 8(t),就会得到
请注意,脉冲漂移特性定义中的自变量不同于卷积:
现在我们可以应用筛分性质,得出函数在 r =0 时的值,即
换句话说,与原点处的脉冲相卷积的函数不会改变函数。
位于 t 处的脉冲可写成 8(t-t)。根据上述推理,我们可以写出
这与公式(4-13)一致。换句话说,函数现在被复制了,因此,函数在任意点 t 的值现在出现在位置 (t-ty)。例如,f(t) 的原点现在位于 t,而不是 0。
4.5
别名函数由所示样本组成。
4.6
(a) 采样率必须大于 1 采样/秒。图 P4.6 显示的采样率略高于 1 采样/秒。
4.7
(b) 奈奎斯特速率是最高频率的两倍,即 (2)(1/2)=1 样本/秒。
4.8
由例 4.2 可知
由此可知,指数的反傅里叶变换一定是脉冲、
根据定义,f(t)= eJ2k 的傅立叶变换为
其中我们使用了上一方程中第二行的形式。最后一行由问题 4.1(c)得出。
4.9
(a) 由欧拉公式可知
将这一表达式直接代入傅立叶变换的定义,即可得出
其中最后一步由问题 4.8 得出。
4.10
(a) 周期为 2nt = 2,或 t = 1/n。
(b) 频率为 1 除以周期,即 n。
(c) 给定正弦波的连续傅立叶变换如图 P4.10(a)所示(见问题 4.9),采样数据的变换(显示几个周期)如图 P4.10(b)所示(虚线框是一个理想滤波器,如果对正弦函数进行采样,在满足采样定理的情况下,可以重建该滤波器)。如果满足采样定理,采样函数将如问题 4.6(a)所示。
4.11
从公式 (4-24) 开始、
该表达式的傅立叶变换为
内括号内的项是 g(t-T) 的傅立叶变换。但是,根据平移性质(表 4.4),我们可以知道
所以
这证明了频域中的乘法等于空间域中的卷积。
空间域乘法等于空间域卷积的证明方法与此类似。
4.12 暂无
4.13
4.14 暂无
4.15
(b) 我们通过直接代换和使用正交性来解决这个问题。首先,我们必须证明 F(w)f(x) 的 DFT。将式(4-45)代入式(4-44)可得
其中,由于正交性,除非 r = u,否则第三步为 0。
接下来,我们必须证明 f(x) 是 F(u) 的逆 DFT。将公式 (4-44) 代入 (4-45) 即可得到
通过证明 F(u) 是 f(x) 的 DFT,f(x) 是 F(u) 的 IDFT,我们确定公式 (4-44) 和 (4-45) 构成了一对傅里叶变换。
4.16 暂无
4.17
(a) 通过直接代入正向 DFT 公式 (4-44),我们可以证明双箭头左侧的 DFT 等于右侧:
由于我们是通过直接代入公式 (4-44) 来实现的,而该公式和公式 (4-45) 是一对傅里叶变换,因此双箭头的左侧必然是右侧的 IDFT。
4.18
(a) 我们必须首先证明卷积 f(x)*h(x) 的傅立叶变换是乘积 F(u)H(u),反之亦然。利用公式 (4-24) 中的一维卷积定理定义、公式 (4-44) 中的 DFT 和公式 (4-48) 中的一维离散卷积,我们可以写出
其中第三步由傅立叶变换的平移性质得出(见问题 4.17)。
由于我们通过代入 DFT 显示了前面的性质,而 DFT 和 IDFT 是一对变换,因此反过来,即 f(x)* h(x) 是 F(u)H(u) 的 IDFT 也一定是真的(见书中公式(4-44)和(4-45)之后关于这一概念的讨论)。
4.19
4.20 暂无
4.21
(a) 由于图像的所有行都相同,我们可以将注意力集中在其中一行,这是一个周期为 P 的一维方波,周期为四个像素。如果条纹宽度为 4 个像素,那么周期为 8 个像素,信号频率为 f =1/8=0.125 个周期/像素,是原始信号频率的二分之一。问题陈述中所示频谱的中心峰为直流项,另外两个主峰出现在频谱的横轴上,正好位于频谱横轴中心和两端的中间。(频谱中还包含其他振幅较低的谐波频率成分,故未显示)。
4.22 暂无
4.23
一个不会因像素复制而产生混叠的简单图像示例是白色背景上的黑色矩形,条件是矩形与图像边界完全对齐。缩放会导致矩形变大,但边缘会完全保留,放大后的对象将是一个完美的矩形,边缘不会退化(如锯齿)。
4.24
(a) 根据公式 (4-59)、
根据公式 (2-23),我们知道傅立叶变换是线性算子,如果
代入傅立叶变换的定义可得
其中第二步由积分的分配性质得出。反变换的线性关系也是以完全相同的方式证明的。
4.25
(a) 我们通过直接代入正向傅立叶变换(式 (4-59))来解决问题:
由于我们使用了直接代入公式 (4-59)的方法,且该公式和公式 (4-60) 是一对傅里叶变换,因此双箭头的左侧必然是右侧的逆变换,即
4.26
(a) 直接代入公式 (4-59) 即可得出
由于我们使用直接代入公式 (4-59),且该公式和公式 (4-60) 是一对傅立叶变换,因此双箭头的左侧必然是右侧的逆变换,
(b) 我们从反傅里叶变换开始解决这个问题
因为我们使用了直接代入公式(4-60)的方法,而这个公式和公式(4-59)是一对傅立叶变换,所以双箭头的右边一定是左边的正向变换,即
(c) 直接代入公式 (4-59) 即可解决问题:
由于我们使用了直接代入公式(4-59)的方法,而这个公式和公式(4-60)是一对傅立叶变换,因此双箭头的左边必然是右边的反变换,即
我们可以直接利用问题 4.25(b)中的结果来解决这个问题,让 f = 8,并利用上文(a)中的知识,即当 f = 8 时,傅里叶变换为 F = 1。
(e) 直接代入公式(4-59),并使用欧拉公式展开余弦,可得
我们把这两个积分看作指数的傅立叶变换,我们在(d)部分求解了指数的傅立叶变换。
由于我们使用了直接代入公式 (4-59)的方法,且该公式和公式 (4-60) 是一对傅里叶变换,因此双箭头的左侧必然是右侧的逆变换,即
4.27
(b) 左边是右边的逆 DFT,这一点更容易证明。代入公式 (4-68) 可以得到
这样,我们就证明了双箭头左侧是右侧表达式的逆 DFT。由于我们是通过直接代入公式 (4-68) 来实现这一点的,而这个公式和公式 (4-67) 是一对傅立叶变换,因此必然反过来也成立;即
是
的正傅里叶变换。
4.28
(a) 我们直接代入公式(4-67)即可解决问题:
其中第三步是根据二维脉冲的筛分特性得出的,公式 (4-58)。由于我们直接代入了式 (4-67),且该式与式 (4-68) 是一对傅立叶变换,因此双箭头的左边必然是右边的 IDFT:
(b) 我们从公式 (4-68) 的反 DFT 开始来解决这个问题:
因为我们使用了直接代入式 (4-68),而该式与式 (4-67) 是一对傅立叶变换,所以双箭头的右侧必然是左侧的 DFT:
(d) 我们直接代入逆 DFT 即式(4-68)即可解决问题:
由于我们直接代入了公式(4-68),而这个公式和公式(4-67)是一对傅里叶变换,因此双箭头右边是左边的傅里叶变换:
我们可以直接利用问题 4.27(a)的结果来解决这个问题,让 f(x.y)=1 并认识到当 f =1 时,F = 8(见 (b) 部分)。
(f) 我们直接代入正向 DFT 即式(4-67),并使用欧拉公式用指数表示正弦,即可解决这个问题:
其中第二步将表达式转化为指数的傅里叶变换形式。正如第三步所示,这些变换的结果在第(d)部分的陈述中给出。
4.29 暂无
4.30
(a) 函数 f(x) 的周期 P 是指对于所有 x,f(x+P)=f(x)。周期是 2 个单位(或 2 个样本,因为在这种情况下,样本是数字本身,它们之间相隔 1 个单位)(即在这种情况下,完成每个周期需要两个样本)。频率是 1/2 周期/单位、1/2 周期/采样或 1/2 周期/采样的倒数。
4.31
(a) 考虑一个 4 点序列。如果序列是偶数,其值必须满足
f(0)= f(4), f(1)= f(3), (2)= f(2), f(3)= f(1)
正如我们在例 4.10 中解释的,f(4) 超出了范围。因此,它的值是多少并不重要,f(O)总是等于它。然而,请注意,第三项(即 M/2= 2 处的一项)要求 f(2)= f(2)。这对于任何任意数都是满足的。这个想法可以直接推广到 M 的任何偶数值。
4.32
(a) 这个序列的对称性是偶数,因此第一个元素是任意的。序列的长度为 5 个元素,因此其中心在 M=2 处,即序列中的第 3 点(记住,我们从 0 开始计数)。长度为 0 的 9 个元素的 1-D 场的中心位于 4,也就是从左边数起的第 5 个点。因此,现在要嵌入的序列是(0,b,c,c,b},当嵌入(中心重合)到 9 个 0 的域中时,看起来就像图 P4.32(a)。所有成对元素的值都相同,证明这是一个偶数序列。
4.33 暂无
4.34
(a) 确定下列数组是否
数组是奇数,条件是
则 x,y = 0,1,2,3,4,5。当 (x, y)=(0,0) 时,我们必须检验 -wg(6,6),它超出了检验范围,可能是任何值,因此 w(0,0) 的值在奇异性检验中无关紧要。数组第一列或第一行中的所有其他项也是如此,因为两个坐标中有一个是 0。因此,我们只需测试前面的数组,就可以在 x, y =1,2,3,4,5 时测试上述数组。例如,当 (x,y)=(3,2) 时,我们有 w,(3.2)=-2 和 。事实上,如果将所有数对进行比较,就会发现 w。(x,y)=-w,(6-x,6-y),前提是将变量的值限定为 x,y = 1,2,3,4,5。请注意,当我们用这个检验来讨论偶数和奇数数组时,我们指的是元素的位置和值。
4.35
下面是表 4.1 中某些性质的证明,其他性质的证明见第 4 章。回顾一下,当我们称一个函数为虚函数时,它的实部为零。我们用复数来表示实部和虚部都不为零的函数。我们只证明傅立叶变换对的正演部分。类似的技术也可用于证明反演部分。
(a) 性质 2:如果 f(x. y) 是虚函数,f(x,.y)-F(-u,-o)=-F(u,v)。因为 f(x,y) 是虚函数,我们可以把它表示为 jg(x.y),其中 g(x,y) 是实函数。证明如下
(b) 性质 4:若 f(x,y) 为虚数,则 R(u,o) 为奇数,I(u,o) 为偶数: F 是复数,因此可以表示为
那么,-F(u,v)=-R(u,v)-j(u,v),F(-u,-v)=R(一u,-)-jI(-u,-v)。但是,由于 f(x,y) 是虚数,F"(-u,-v) =-F(u,v)(见性质 2)。由前两个等式可知,R(u,v) =-R(一u,-v)(即 R 为奇数),I(u,o) = I(一u,-o)(I 为偶数)。
(d) 性质 7:当 f(x,y) 是复数时,f "(x,y)F*(-u,-o ).Proof:
4.36
(a) 原始图像的平均值为
图像
对于填充图像
其中第二步是图像填充 0 的结果。因此,平均值的比值为
该比值随 PQ 的变化而增大,表明填充图像的平均值随 PQ 的变化而减小。
4.37 暂无
4.38
(b) 与我们代入 DFT 的 (a) 部分不同,这里更容易将卷积的定义 F(u,o)* H(u,o ) 直接代入 IDFT:
其中第四步由平移性质得出(见问题 4.27)。因为我们是通过代入 IDFT 来证明前文的,而 DFT 和 IDFT 是一对变换,那么反过来,即 (F* H)(u,o ) 是 (f-h)(x,y) 的 DFT 也一定成立。
4.39
(a) 我们将表 4.3 中的相关性定义直接代入 DFT 公式 (4-67) 来解决这个问题
因为我们是通过代入 DFT 来证明前文的,而 DFT 和 IDFT 是一对变换,那么反过来,即 f(x, y)☆h(x, y) 是 F (u,o)H(u,v) 的 IDFT 也一定成立。
4.40
我们从一个变量开始:
分式积分的一般形式如下
因此
因为假设 f(ts)=0 (见表 4.4)。定义(z) = df(z)/dz。那么
但是,g(z)= df(z)/dz,所以 G(v)=(j2wv)F(w),并且
这样继续下去,可以得到
如果我们现在进行二维运算,只对一个变量求导,就会得到与前面表达式相同的结果,但我们必须使用偏导数来表示微分所适用的变量,而不是 F(p),我们将得到 F(pu,)、
定义。那么
但 G(u,v) 是 g(t,z)= d "f(t,z)/at" 的变换,我们知道它等于 ( j2zu "F(u,v)) 。
由于傅立叶变换是唯一的,我们知道这个等式右边的逆变换会得到左边,因此这个等式构成了一对傅立叶变换(请记住,我们处理的是连续变量)。
4.41 暂无
4.42
除非图像的所有边界都是黑色的,否则用 Os 填充图像会在图像的一个或多个边界带来明显的不连续性(边缘)。
这些空间域中尖锐的强度转换会沿着频谱的纵轴和横轴产生强烈的高频成分。
4.43 暂无
4.44
图 4.34(b)中图像的傅里叶变换是 |F(u,o)e-1*%。图 4.34(b)中图像的变换为 |F(u,o)e-1*%(即该图像中的相位角为原始图像中相位角的负值)。
根据表 4.1 中的性质 5,F(u,v) 的逆变换为 f(-x,-y) ,这正是图 4.34(b)中的图像。
4.45
4.46 暂无
4.47
(a) 空间平均值(不包括中心项)为
根据表 4.4 中的性质 3、
其中
是滤波器在频域的传递函数。
(b) 为了说明这是一个低通滤波器传递函数,请考虑其在 [-M/2,M/2] 范围内的值。该函数在原点处具有最高值,并在其两侧减小,因此它通过直流项和低频,抑制高频。因此,它起到了低通滤波器传递函数的作用。
4.48
我们要证明
如果我们从一个变量入手,解释会更清楚。我们想证明,如果
则
我们可以将前述方程中的积分表示为
利用特性
得出
接下来,我们改变变量。然后,dr = du,前面的积分变为
最后,我们将方程右边乘以√2To 并除以√2To,得到
括号内的表达式被认为是高斯概率密度函数,从 -.oo 到 oo 的值都是 1、
有了前面的结果作为背景,我们现在可以证明
直接代入反傅立叶变换的定义,我们可以得到
从前面的讨论中可以看出,括号内的积分等于。那么,前面的积分变为
余下的积分等于,由此得出最终结果:
4.49
(a) 滤波器的一次应用得出
同样,应用 K 次滤波器可以得到
Gx(u,o) 的反 DFT 将给出高斯滤波器 K 次滤波后的图像。如果 K "足够大",高斯 LPF 就会变成陷波滤波器,只通过 F(0.0)。我们知道,这个值等于图像的平均值。因此,存在一个 K 值,在该值之后,重复低通滤波的结果将产生一个恒定的图像。请注意,即使 K 接近无穷大,答案也是适用的。在这种情况下,滤波器将接近原点处的脉冲,这仍然会得到滤波结果 F(0,0)。