什么叫二分查找
「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。
Question
给定一个长度为 N的数组 nums
,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target
在该数组中的索引。若数组不包含该元素,则返回 −1 。
常规套路
我们先初始化指针 left=0 和 right=N−1 ,分别指向数组首元素和尾元素,代表搜索区间 [0,N−1] 。请注意,中括号表示闭区间,其包含边界值本身
接下来,循环执行以下两步。
- 计算中点索引 mid=⌊(left+right)/2⌋ ,其中 ⌊⌋ 表示向下取整操作。
- 判断
nums[m]
和target
的大小关系,分为以下三种情况。- 当
nums[m] < target
时,说明target
在区间 [mid+1,right] 中,因此执行 left=mid+1 。 - 当
nums[m] > target
时,说明target
在区间 [left,mid−1] 中,因此执行 right=mid−1 。 - 当
nums[m] = target
时,说明找到target
,因此返回索引 mid。
- 当
若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 −1 。
上图的 i (left) j(right)
值得注意的是,由于 left和 right 都是 int
类型,因此 left+right 可能会超出 int
类型的取值范围。为了避免大数越界,我们通常采用公式 mid=⌊left+(right−left)/2⌋ 来计算中点 最好使用
mid=(left+(right-left)>>1)
代码
/* 二分查找(双闭区间) */
int binarySearch(int[] nums, int target) {
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
int i = 0, j = nums.length - 1;
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
while (i <= j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
j = m - 1;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
区间表示方法¶
除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 [0,N) ,即左边界包含自身,右边界不包含自身。在该表示下,区间 [left,right] 在 left=right 时为空。
和上一段代码最大的区别就是 上一段代码的右边边界是nums.length-1 所以N-1指向的是数组的最后一个元素 而这段代码 右边界是直接等于 数组的长度 因为数组的长度是从1开始计算的 所以该表达的是 最后一个元素还要加一的位置.
我们可以基于该表示实现具有相同功能的二分查找算法。
/* 二分查找(左闭右开) */
int binarySearchLCRO(int[] nums, int target) {
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
int i = 0, j = nums.length;
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
while (i < j) {
int m = i + (j - i) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
j = m;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
比较两者区别
在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。
由于“双闭区间”表示中的左右边界都被定义为闭区间,因此指针 left 和 right 缩小区间操作也是对称的。这样更不容易出错,因此一般建议采用“双闭区间”的写法。