二分查找也有公式模版

3 篇文章 0 订阅
1 篇文章 0 订阅

什么叫二分查找

「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。

Question

给定一个长度为 N的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 −1 。

常规套路 

我们先初始化指针 left=0 和 right=N−1 ,分别指向数组首元素和尾元素,代表搜索区间 [0,N−1] 。请注意,中括号表示闭区间,其包含边界值本身

接下来,循环执行以下两步。

  1. 计算中点索引 mid=⌊(left+right)/2⌋ ,其中 ⌊⌋ 表示向下取整操作。
  2. 判断 nums[m] 和 target 的大小关系,分为以下三种情况。
    1. 当 nums[m] < target 时,说明 target 在区间 [mid+1,right] 中,因此执行 left=mid+1 。
    2. 当 nums[m] > target 时,说明 target 在区间 [left,mid−1] 中,因此执行 right=mid−1 。
    3. 当 nums[m] = target 时,说明找到 target ,因此返回索引 mid。

若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 −1 。

上图的 i (left)  j(right) 

值得注意的是,由于 left和 right 都是 int 类型,因此 left+right 可能会超出 int 类型的取值范围。为了避免大数越界,我们通常采用公式 mid=⌊left+(right−left)/2⌋ 来计算中点  最好使用

mid=(left+(right-left)>>1)

代码

/* 二分查找(双闭区间) */
int binarySearch(int[] nums, int target) {
    // 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
    int i = 0, j = nums.length - 1;
    // 循环,当搜索区间为空时跳出(当 i > j 时为空)
    while (i <= j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
            j = m - 1;
        else // 找到目标元素,返回其索引
            return m;
    }
    // 未找到目标元素,返回 -1
    return -1;
}

区间表示方法

除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 [0,N) ,即左边界包含自身,右边界不包含自身。在该表示下,区间 [left,right] 在 left=right 时为空。

和上一段代码最大的区别就是 上一段代码的右边边界是nums.length-1 所以N-1指向的是数组的最后一个元素   而这段代码 右边界是直接等于 数组的长度 因为数组的长度是从1开始计算的 所以该表达的是 最后一个元素还要加一的位置.

我们可以基于该表示实现具有相同功能的二分查找算法。

/* 二分查找(左闭右开) */
int binarySearchLCRO(int[] nums, int target) {
    // 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
    int i = 0, j = nums.length;
    // 循环,当搜索区间为空时跳出(当 i = j 时为空)
    while (i < j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
            j = m;
        else // 找到目标元素,返回其索引
            return m;
    }
    // 未找到目标元素,返回 -1
    return -1;
}

比较两者区别

在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。

由于“双闭区间”表示中的左右边界都被定义为闭区间,因此指针 left 和 right 缩小区间操作也是对称的。这样更不容易出错,因此一般建议采用“双闭区间”的写法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>