自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 weighted-f1和micro-f1的区别

Weighted-F1 是对每个类别单独计算 F1-score,然后按照类别的样本数量进行加权平均。的变体,F1-score 是用于衡量分类模型性能的指标,结合了。计算 F1-score,适用于类别不均衡时。

2025-02-27 17:23:38 823

原创 n-gram是什么

是自然语言处理(NLP)中的一种基本概念,用于表示一段文本中连续出现的或的组合。它是一种简单且常用的特征提取方法,广泛用于文本分析、语言建模、文本分类、拼写检查等领域。

2024-11-21 16:21:44 284

原创 AMI, ARI, FMS, MRR, P@1, MAP@r指标的意义

FMS 值越高,表示模型的聚类结果与真实标签的一致性越好。它比较模型生成的聚类与真实情绪标签之间的匹配程度。ARI 值越高,表示模型的聚类结果与真实标签的一致性越好。它衡量的是模型生成的聚类与真实情绪标签之间的一致性。:在排名为1的精度是指模型将具有相同情绪标签的片段排在最前面的准确率。P@1 值越高,表示模型在识别最相关的片段方面的表现越好。它计算的是模型识别出所有与查询片段具有相同情绪标签的片段的平均精度。在这里,它衡量的是模型识别出与查询片段具有相同情绪标签的最近邻片段的能力。

2024-10-28 15:08:04 570

原创 常见的性能评价指标(ACC-7,ACC,F1,MAE ,Corr )

在多模态情感分析等机器学习任务中,和是常见的性能评价指标。它们用于评估模型在分类或回归任务中的表现,帮助研究人员和开发人员了解模型的预测准确性、误差大小和预测能力。

2024-10-14 16:03:56 2633

原创 精确率(Precision)和召回率(Recall)和准确率(accuracy)的区别

精确率关注的是模型预测为正类时有多准确,适合误报代价高的场景。召回率关注的是模型能够识别出多少正类样本,适合漏报代价高的场景。准确率关注的是模型整体的预测正确性,但在类别不均衡时可能误导决策。三者的选择取决于具体应用场景中的任务需求和代价。

2024-09-27 20:28:39 2443 1

原创 Linux卸载steam

如何在Linux卸载steam

2024-08-14 16:36:12 1373 1

CMU-MOSEI数据集

CMU-MOSEI数据集

2025-03-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除