- 博客(6)
- 收藏
- 关注
原创 weighted-f1和micro-f1的区别
Weighted-F1 是对每个类别单独计算 F1-score,然后按照类别的样本数量进行加权平均。的变体,F1-score 是用于衡量分类模型性能的指标,结合了。计算 F1-score,适用于类别不均衡时。
2025-02-27 17:23:38
823
原创 n-gram是什么
是自然语言处理(NLP)中的一种基本概念,用于表示一段文本中连续出现的或的组合。它是一种简单且常用的特征提取方法,广泛用于文本分析、语言建模、文本分类、拼写检查等领域。
2024-11-21 16:21:44
284
原创 AMI, ARI, FMS, MRR, P@1, MAP@r指标的意义
FMS 值越高,表示模型的聚类结果与真实标签的一致性越好。它比较模型生成的聚类与真实情绪标签之间的匹配程度。ARI 值越高,表示模型的聚类结果与真实标签的一致性越好。它衡量的是模型生成的聚类与真实情绪标签之间的一致性。:在排名为1的精度是指模型将具有相同情绪标签的片段排在最前面的准确率。P@1 值越高,表示模型在识别最相关的片段方面的表现越好。它计算的是模型识别出所有与查询片段具有相同情绪标签的片段的平均精度。在这里,它衡量的是模型识别出与查询片段具有相同情绪标签的最近邻片段的能力。
2024-10-28 15:08:04
570
原创 常见的性能评价指标(ACC-7,ACC,F1,MAE ,Corr )
在多模态情感分析等机器学习任务中,和是常见的性能评价指标。它们用于评估模型在分类或回归任务中的表现,帮助研究人员和开发人员了解模型的预测准确性、误差大小和预测能力。
2024-10-14 16:03:56
2633
原创 精确率(Precision)和召回率(Recall)和准确率(accuracy)的区别
精确率关注的是模型预测为正类时有多准确,适合误报代价高的场景。召回率关注的是模型能够识别出多少正类样本,适合漏报代价高的场景。准确率关注的是模型整体的预测正确性,但在类别不均衡时可能误导决策。三者的选择取决于具体应用场景中的任务需求和代价。
2024-09-27 20:28:39
2443
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人