在多模态情感分析等机器学习任务中,ACC-7、ACC、F1、MAE 和 Corr 是常见的性能评价指标。它们用于评估模型在分类或回归任务中的表现,帮助研究人员和开发人员了解模型的预测准确性、误差大小和预测能力。以下是对这些指标的详细解释:
1. ACC-7(7 类准确率)
ACC-7 指的是模型在 7 类分类任务 中的准确率 (Accuracy),即模型预测正确的样本占总样本的比例。通常用于多类分类任务,在多模态情感分析中,情感可能被划分为 7 个不同的类别(如强烈负面、负面、中性、正面、强烈正面等)。
- 计算公式:
A C C − 7 = 正确分类的样本数 总样本数 ACC-7 = \frac{\text{正确分类的样本数}}{\text{总样本数}} ACC−7=总样本数正确分类的样本数 - 用途:适用于多类情感分类问题,衡量模型在 7 个不同情感类别中的整体分类性能。
- 优点:简单直观,能够直接反映模型在多类别情感分类中的准确性。
- 缺点:当类别不平衡时,准确率可能会失衡,模型可能倾向于对较大类别进行过度预测,导致高的 ACC 但实际分类效果并不好。
2. ACC(准确率)
ACC(Accuracy)是机器学习中最常用的分类性能度量之一,表示模型预测正确的样本所占总样本的比例。
- 计算公式:
A C C = 正确分类的样本数 总样本数 ACC = \frac{\text{正确分类的样本数}}{\text{总样本数}} ACC=总样本数正确分类的样本数 - 用途:常用于二分类或多分类任务,衡量模型的整体分类性能。
- 优点:能够简单直接地反映模型的预测效果。
- 缺点:同样,准确率在类别不平衡的数据集中可能产生误导性,特别是如果某一类样本占大多数,模型可能只需预测这一类就能获得较高的 ACC。
3. F1 分数
F1 分数 是 精确率(Precision)和 召回率(Recall)的调和平均数,常用于衡量分类模型在 不平衡数据 上的表现。它特别适合评估模型在数据类别不平衡时的性能,因为它同时考虑了错误分类的正类和负类样本。
- 计算公式:
F 1 = 2 × 精确率 × 召回率 精确率 + 召回率