常见的性能评价指标(ACC-7,ACC,F1,MAE ,Corr )

在多模态情感分析等机器学习任务中,ACC-7ACCF1MAECorr 是常见的性能评价指标。它们用于评估模型在分类或回归任务中的表现,帮助研究人员和开发人员了解模型的预测准确性、误差大小和预测能力。以下是对这些指标的详细解释:

1. ACC-7(7 类准确率)

ACC-7 指的是模型在 7 类分类任务 中的准确率 (Accuracy),即模型预测正确的样本占总样本的比例。通常用于多类分类任务,在多模态情感分析中,情感可能被划分为 7 个不同的类别(如强烈负面、负面、中性、正面、强烈正面等)。

  • 计算公式
    A C C − 7 = 正确分类的样本数 总样本数 ACC-7 = \frac{\text{正确分类的样本数}}{\text{总样本数}} ACC7=总样本数正确分类的样本数
  • 用途:适用于多类情感分类问题,衡量模型在 7 个不同情感类别中的整体分类性能。
  • 优点:简单直观,能够直接反映模型在多类别情感分类中的准确性。
  • 缺点:当类别不平衡时,准确率可能会失衡,模型可能倾向于对较大类别进行过度预测,导致高的 ACC 但实际分类效果并不好。

2. ACC(准确率)

ACCAccuracy)是机器学习中最常用的分类性能度量之一,表示模型预测正确的样本所占总样本的比例。

  • 计算公式
    A C C = 正确分类的样本数 总样本数 ACC = \frac{\text{正确分类的样本数}}{\text{总样本数}} ACC=总样本数正确分类的样本数
  • 用途:常用于二分类或多分类任务,衡量模型的整体分类性能。
  • 优点:能够简单直接地反映模型的预测效果。
  • 缺点:同样,准确率在类别不平衡的数据集中可能产生误导性,特别是如果某一类样本占大多数,模型可能只需预测这一类就能获得较高的 ACC。

3. F1 分数

F1 分数精确率(Precision)和 召回率(Recall)的调和平均数,常用于衡量分类模型在 不平衡数据 上的表现。它特别适合评估模型在数据类别不平衡时的性能,因为它同时考虑了错误分类的正类和负类样本。

  • 计算公式
    F 1 = 2 × 精确率 × 召回率 精确率 + 召回率
### MOSEI 数据集分类方法及应用 #### 1. 数据集概述 MOSEI (Multimodal Sentiment Analysis with Word-Aligned Modalities) 是一个多模态情感分析数据集,由 ZADEH 等人在2018年发布[^1]。该数据集包含了视频、音频和文本三种模式的数据,并提供了详细的标注信息。 #### 2. 多模态特征提取 为了有效利用 MOSEI 数据集中不同模态的信息,在处理过程中通常会分别提取各个模态的特征: - **视觉特征**:通过卷积神经网络(CNN)或其他图像/视频处理模型从帧序列中抽取。 - **声学特征**:采用梅尔频率倒谱系数(MFCC)、语调变化等技术从语音信号中获得。 - **文本特征**:可以使用预训练的语言模型如 BERT 或者词袋模型来表示句子含义。 这些特征随后会被融合在一起用于后续的任务建模。 ```python import torch from transformers import BertModel def extract_text_features(texts): model = BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) text_embeddings = outputs.last_hidden_state.mean(dim=1).detach().numpy() return text_embeddings ``` #### 3. 融合策略 针对多模态学习中的异构特性,研究者们设计了多种有效的跨模态交互机制: - **早期融合**:简单地将来自各感官通道得到的结果拼接起来作为输入给下游任务; - **晚期融合**:独立训练每一种类型的感知器之后再做决策层面组合; - **中间层融合**:引入额外模块专门负责协调不同类型间的关系转换问题。 其中,中间层融合被认为是最具潜力的方法之一因为它能够更好地捕捉到不同感觉器官之间的内在联系并提高整体表现力。 #### 4. 性能评估指标 当涉及到具体评价标准时,除了常见的均方根误差(RMSE), 还有以下几个重要参数被用来衡量系统的好坏程度: - 平均绝对误差(MAE): 表示预测值与真实标签之间差距大小; - Pearson相关性(Corr): 反映两者线性关系强度; - 二元精度(Acc-2): 计算正负两类别的正确率总和的一半; - F-Score(F1): 综合考虑精确度(Precision) 和召回率(Recall); - 多级精度(Acc-7): 针对七种类别划分情况下的准确性统计. 值得注意的是,在计算 Acc-2 和 F1 的时候存在两种定义方式取决于如何界定正面样本区间 [-3,0) vs [0,3] 或 (-∞,0) vs (0,+∞)[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值