高频电子线路——串联谐振、并联谐振总结

前言

最近在学习高频电子线路中的串联谐振回路和并联谐振回路相关知识,特以此文进行总结、归纳,以便日后进行查询和复习。

串联谐振(电压谐振)并联谐振(电流谐振)
定义由信号源与电容、电感串联构成的振荡回路由信号源与电容、电感线圈并联的振荡回路
电路图
阻抗Z=R+j(\omega L-\frac{1}{\omega C})

 阻抗、

导纳、

谐振电阻R_{p} 

Z=\frac{(R+j\omega L)\frac{1}{j\omega C}}{R+j\omega L+\frac{1}{j\omega C}}\approx \frac{\frac{L}{C}}{R+j(\omega L-\frac{1}{\omega C})}=\frac{1}{\frac{RC}{L}+j(\omega C-\frac{1}{\omega L})}

Y=\frac{RC}{L}+j(\omega C-\frac{1}{\omega L})

R_{p}=\frac{L}{RC}

回路电抗X=\omega L-\frac{1}{\omega C}回路电纳B=\omega C-\frac{1}{\omega L}
回路电流\dot{I}=\frac{V_{s}}{Z}=\frac{V_{s}}{R+j(\omega L-\frac{1}{\omega C})}并联回路两端电压\dot{V}=\dot{I_{s}}Z=\frac{\dot{I_{s}}}{\frac{RC}{L}+j(\omega C-\frac{1}{\omega L})}
谐振频率

\omega _{0}L-\frac{1}{\omega _{0}C}=0

\omega _{0}=\frac{1}{\sqrt{LC}}

谐振频率

\omega _{p}L-\frac{1}{\omega _{p}C}=0

\omega _{p}=\frac{1}{\sqrt{LC}}

回路电流达到最大值\dot{I_{0}}=I_{max}=\frac{V_{s}}{R}并联两端电压达到最大值\dot{V_{p}}=V_{max}=I_{s}R_{p}
电抗与频率关系电纳与频率关系

 特性阻抗\rho

\rho =\omega _{0}L=\frac{1}{\omega _{0}C}

 特性阻抗\rho

\rho =\omega _{p}L=\frac{1}{\omega _{p}C}
品质因数Q=\frac{\omega _{0}L}{R}=\frac{1}{\omega _{0}CR}=\frac{\rho }{R}品质因数

Q_{p}=\frac{\omega _{p}L}{R}=\frac{1}{\omega _{p}CR}=\frac{\rho }{R}

Q_{p}=\frac{R_{p}}{\omega _{p}L}=R_{p}\omega _{p}C

Q_{p}=\frac{\frac{1}{\omega _{p}L}}{G}=\frac{\omega _{p}C}{G}

电感、电容两端电压

\dot{V}_{L0}=\dot{I_{0}}j\omega _{0}L=\frac{\dot{V_{s}}}{R}j\omega _{0}L=j\frac{\omega _{0}L}{R}\dot{V_{s}}=jQ\dot{V_{s}}

\dot{V_{c0}}=\dot{I_{0}}\frac{1}{j\omega _{0}C}=-j\frac{1}{\omega _{0}CR}\dot{V_{s}}=-jQ\dot{V_{s}}

电容、电感的支路电流

\dot{I_{cp}}=\frac{\dot{V_{0}}}{\frac{1}{j\omega _{p}C}}=j\omega _{p}C\dot{I_{s}}R_{p}=jQ_{p}\dot{I_{s}}

I_{Lp}=\frac{\dot{V_{0}}}{j\omega _{p}L}=\frac{R_{p}\dot{I_{s}}}{j\omega _{p}L}=-jQ_{p}\dot{I_{s}}

谐振曲线表达式

\frac{I}{I_{0}}=\frac{1}{\sqrt{1+Q^{2}(\frac{\omega }{\omega _{0}}-\frac{\omega _{0}}{\omega })^{2}}}

      \approx \frac{1}{\sqrt{1+(Q\frac{2\Delta \omega }{\omega _{0}})^{2}}}

并联谐振曲线表达式

\frac{V}{V_{0}}=\frac{1}{\sqrt{1+Q^{2}(\frac{\omega }{\omega _{p}}-\frac{\omega _{p}}{\omega })^{2}}}

      \approx \frac{1}{\sqrt{1+(Q\frac{2\Delta \omega }{\omega _{p}})^{2}}}

广义失谐系数\xi =\frac{X}{R}=\frac{\omega L-\frac{1}{\omega C}}{R}=\frac{\omega_{0}L}{R}(\frac{\omega }{\omega _{0}}-\frac{\omega _{0}}{\omega })\approx Q\frac{2\Delta \omega }{\omega _{0}}广义失谐系数

\xi =\frac{B}{G}=\frac{\omega C-\frac{1}{\omega L}}{G}=\frac{\omega _{p}C}{G}(\frac{w}{w_{p}}-\frac{\omega _{p}}{\omega })

\approx 2\frac{\Delta \omega }{\omega _{p}}

串联振荡电路谐振曲线

Q值大曲线尖锐,选择性好,Q值小曲线钝,通带宽

并联振荡电路谐振曲线

Q值大曲线尖锐,选择性好,Q值小曲线钝,通带宽

通频带B=\frac{\omega _{0}}{Q}通频带B=\frac{\omega _{p}}{Q_{p}}
考虑电源内阻和负载

Q=\frac{\omega _{0}L}{R}=Q_{0}

Q_{L}=\frac{\omega _{0}L}{R+R_{L}+R_{S}}

Q_{L}<Q_{0}

结论:

1:Rs+RL使回路Q值降低,从而使谐振曲线变钝

2:串联谐振回路通常适用于信号源内阻Rs很小(恒压源)和负载电阻RL也不大的情况

考虑电源内阻和负载

结论:

并联谐振适合电源内阻和负载很大的电路

总结:

以上就是对串联谐振电路和并联谐振电路性质的总结,谢谢你能观看到这。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

门牙会稍息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值