永磁同步风机背靠背PWM变流器并网系统MATLAB仿真模型

“电气仔推送”获得资料(专享优惠)

模型简介

此模型是经典的永磁同步风机并网模型,采用背靠背式变流器,中间直流母线1800V;采用随机风速模型模拟风速,更有利于波形分析。模型各部分完整,适合课程设计参考,赠送建模说明文件(与模型保持一致)。

注:随机风速模型如果加载不出来,可能是因为MATLAB版本过高的问题导致。(此文采用2023a版本进行测试)

系统建模

永磁直驱风电机组带储能系统的基本结构如图所示。系统主电路采用背靠背式全功率变流器,发电机首先将风能转换为频率和幅值变化的交流电,经过机侧变流器整流之后变为直流, 然后通过控制网侧变流器输出电流的频率和相位来跟踪并网电压的频率与相位,从而将交流电传递到并网。其中,iga、igb、igc 分别为三相并网输入电流,Uga、Ugb、Ugc分别为三相并网电压。

永磁同步发电机具有功率密度大、体积小、转矩/惯量比大、动态响应快等一系列优点。它属于强耦合的非线性系统,其数学模型是设计电机、分析电机性能及控制电机的基础,同时也为改善控制系统的性能提供了理论依据,在转子磁场定向方式下,永磁同步电机在dq同步旋转轴下的数学模型可表示为:

选取两相同步旋转 dq 坐标系中的 d 轴作为电网侧电压空间矢量方向,q 轴超前d轴90度,网侧变换器的数学模型为:

机侧变流器控制策略如图所示:

永磁同步发电机电磁转矩的表达式为:

从上式可看出,发电机的电磁转矩与定子 q 轴电流成正比,因此通过调节iq 即可调节永磁同步发电机的电磁转矩,进而调节发电机和风力机的转速,使之跟随风速变化。最佳转矩法只需测量出发电机转速,控制发电机从轴上吸收的转矩与转速符合最佳转矩曲线的关系,但由于旋转部件惯性能量的存在,始终存在一定的转速差△ωr,因此需要根据计算发电机电磁功率最优值 Popt 从而推算最佳转矩,从而产生发电机最佳转矩,通过对发电机转矩的有效控制实现最大风能捕获。Popt 公式与转速差△ωr 分别表示如下:

网侧变流器控制常采用双闭环控制,可实现发电机单位功率因数运行以及直流母线电压稳定。 电压外环为电压环,可以实时动态跟踪网侧功率变化,间接决定了直流母线电压稳定。内外环为电流环,可以实现对交流侧无功功率的调节功能,且能够实现网侧逆变器按照单位功率因数工作的目标。

电网侧变流器输出的有功功率和无功功率表达式如下:

当电网电压综合矢量定向在 d 轴上时,使得电网电压在q 轴上投影为0,即ugq=0,则变流器输出功率变化如下:

由上式可知,通过调节 d、q 轴上的电流分量 igd 与igq,便可以控制变流器的有功和无功功率变化,从而实现了有功和无功的解耦。并网侧变流器控制框图如图所示。

通过外环 Udc_ref 与 Pdc_ref 分别与 Udc、Pdc 产生偏差经 PI 控制得到d、q 控制电流Igd*、Igq*, 再经电流内环 PI 控制得到得到相应的控制电压Ugd*、Ugq*,并加上交叉耦合电压补偿项 ΔUgd 和 ΔUgq , 便可得到最终的 d、q 轴控制电压分量Ugd 和Ugq,然后通过PWM 控制技术可得到电网侧变流器所需的驱动信号,实现功率的传输。

模型主体

仿真波形

上图为永磁同步风机的相关输出波形,在风速为8m/s时,风机的输出功率大约为80kW,风能利用系数一致保持在0.48。

上图为直流母线电压的输出波形,随着风机风速变化,直流母线电压也会随之波动,因为背靠背式变流器的调节作用,电压仍能维持在1800V。

上图为并网逆变器的相关输出波形,可见,逆变器的有功输出与风机的功率输出保持一致,电流波形随风速波动而变化。

参考文献

风电背靠背PWM变流器直流能量平衡新方法_王冕

数据集概述 本数据集用于情感分析,主要针对Yelp评论,通过比较两种先进的模型——Hugging Face的bert-base-multilingual-uncased和cardiffnlp/twitter-roberta-base-sentiment-latest来分析评论中的情感表达。 模型使用 BERT Multilingual Uncased: 适用于理解多种语言,特别适合处理Yelp评论中多样化的语言特性。 Twitter RoBERTa: 专门针对情感分析进行微调,擅长理解英语情感的细微差别。 构建方 Yelp Reviews Dataset的构建基于Yelp平台上用户提交的评论数据。该数据集通过爬虫技术从Yelp网站上抓取,涵盖了多个国家和地区的餐厅、服务和商品的评论。数据收集过程中,确保了评论的完整性和真实性,同时对文本进行了预处理,包括去除HTML标签、特殊字符和停用词,以保证数据的质量和可用性。 特点 Yelp Reviews Dataset的特点在于其广泛的地理覆盖和多样化的评论内容。数据集包含了数百万条评论,涵盖了从星级评价到详细文本反馈的多种信息形。此外,该数据集还提供了用户、商家和评论之间的关联信息,使得研究者可以进行多维度的分析。评论的情感倾向和语言风格也为自然语言处理和情感分析提供了丰富的素材。 使用方法 Yelp Reviews Dataset可用于多种研究目的,包括但不限于情感分析、用户行为研究、推荐系统构建和市场分析。研究者可以通过分析评论文本,提取用户的情感倾向和偏好,进而优化推荐算法或改进服务质量。此外,该数据集还可用于训练和验证自然语言处理模型,如情感分类器和文本生成模型。使用时,建议根据具体研究需求选择合适的子集和特征进行分析。 背景与挑战 背景概述 Yelp Reviews Dataset,作为在线评论平台Yelp的核心
本项目旨在开发一个基于Python的卷积神经网络(CNN)人脸识别系统,用于检测驾驶员的疲劳状态并及时发出预警。该系统主要通过分析驾驶员的面部特征,如打哈欠、眨眼和点头等行为,来判断驾驶员是否处于疲劳状态,从而提高驾驶安全性。 开发环境 IDE: PyCharm 编程语言: Python 3.6 算法: 卷积神经网络(CNN) 系统功能 本系统主要分为三个部分: 打哈欠检测:通过检测驾驶员的嘴巴张合程度来判断是否打哈欠。 眨眼检测:通过分析驾驶员的眼睛开合度和眨眼频率来判断是否疲劳。 点头检测:通过检测驾驶员的头部姿态变化来判断是否疲劳。 疲劳检测原理 人在疲倦时通常会出现以下两种状态: 眨眼:正常情况下,人的眼睛每分钟大约会眨动10-15次,每次眨眼大约0.2-0.4秒。当人疲劳时,眨眼次数会增加,速度也会变慢。 打哈欠:疲劳时,人的嘴巴会张大并保持一定状态。 因此,通过检测眼睛的开合度、眨眼频率以及嘴巴的张合程度,可以判断一个人是否处于疲劳状态。 检测工具 本项目使用dlib库进行人脸检测和关键点定位。shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的模型库,能够方便地进行人脸检测和应用。 眨眼计算原理 计算眼睛的宽高比(Eye Aspect Ratio, EAR)是判断眨眼状态的关键。当人眼睁开时,EAR值较大;当人眼闭合时,EAR值较小。通过实时计算EAR值的变化,可以判断驾驶员是否在眨眼。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值