新手小白的深度学习tensorflow-gpu训练模型环境搭建Win10+GTX1650--->Anaconda+VSCode+CUDA+cuDNN

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

新手小白,之前一直用CPU训练简单任务,处理的数据量大了之后,CPU明显乏力,一个通宵都跑不出结果(换成GPU训练之后十分钟就能完成),记录一下安装过程,断断续续安装了三天才搞好。


一、我的电脑配置是什么?


WIN10+GTX1650,CPU就不重要了。


二、安装步骤

1.下载Anaconda

参考博主 斗气三段炼丹学徒 的**2025年最详细Anaconda安装+环境配置+基础命令**

很详细,对我这个新手很有帮助,但是在修改虚拟环境安装位置时,注意要把文件的只读权限去掉,同时勾选权限完全控制和修改,如下图,不然anaconda还是会安装虚拟环境到C盘。

在这里插入图片描述
在这里插入图片描述


2.安装CUDA+cuDNN(注意和tensorflow-gpu版本严格对应!!!)

参考TensorFlow官网的版本说明
翻译如下(专业学术风格):

注意:在原生 Windows 系统上,GPU 支持仅适用于 TensorFlow 2.10 或更早版本。从 TensorFlow 2.11 开始,CUDA 构建不再支持 Windows 系统。若需在 Windows 上使用 TensorFlow GPU,需在 WSL2(Windows 子系统 Linux 2)中构建或安装 TensorFlow,或使用 tensorflow-cpu 搭配 TensorFlow-DirectML-Plugin。

在这里插入图片描述
所以,在个人Windows 系统上,tensorflow-gpu-2.10.0是能使用的最高版本,我选择的就是tensorflow-gpu-2.10.0,CUDA和cuDNN去官网下载对应版本默认安装一直点击下一步就行,安装好要注意是否添加到系统环境变量里面。

3.Anaconda中创建激活配置虚拟环境

同理,参考**2025年最详细Anaconda安装+环境配置+基础命令**4.1和4.2小节。

4.在VSCode使用配置好的环境

右上角,或者其他选择编译器的地方,选择需要用的虚拟环境
在这里插入图片描述

5.成功运行

之后使用环境时候,VSCode好像能自动激活需要使用的环境

总结

小白第一次用GPU训练,艰难配置好环境

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值