提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
新手小白,之前一直用CPU训练简单任务,处理的数据量大了之后,CPU明显乏力,一个通宵都跑不出结果(换成GPU训练之后十分钟就能完成),记录一下安装过程,断断续续安装了三天才搞好。
一、我的电脑配置是什么?
WIN10+GTX1650,CPU就不重要了。
二、安装步骤
1.下载Anaconda
参考博主 斗气三段炼丹学徒 的**2025年最详细Anaconda安装+环境配置+基础命令**
很详细,对我这个新手很有帮助,但是在修改虚拟环境安装位置时,注意要把文件的只读权限去掉,同时勾选权限完全控制和修改,如下图,不然anaconda还是会安装虚拟环境到C盘。
2.安装CUDA+cuDNN(注意和tensorflow-gpu版本严格对应!!!)
参考TensorFlow官网的版本说明
翻译如下(专业学术风格):
注意:在原生 Windows 系统上,GPU 支持仅适用于 TensorFlow 2.10 或更早版本。从 TensorFlow 2.11 开始,CUDA 构建不再支持 Windows 系统。若需在 Windows 上使用 TensorFlow GPU,需在 WSL2(Windows 子系统 Linux 2)中构建或安装 TensorFlow,或使用 tensorflow-cpu
搭配 TensorFlow-DirectML-Plugin。
所以,在个人Windows 系统上,tensorflow-gpu-2.10.0
是能使用的最高版本,我选择的就是tensorflow-gpu-2.10.0
,CUDA和cuDNN去官网下载对应版本默认安装一直点击下一步就行,安装好要注意是否添加到系统环境变量里面。
3.Anaconda中创建激活配置虚拟环境
同理,参考**2025年最详细Anaconda安装+环境配置+基础命令**4.1和4.2小节。
4.在VSCode使用配置好的环境
右上角,或者其他选择编译器的地方,选择需要用的虚拟环境
5.成功运行
之后使用环境时候,VSCode好像能自动激活需要使用的环境
总结
小白第一次用GPU训练,艰难配置好环境