2015年数学建模国赛B题(出租车资源)优秀论文.doc

本博客下载链接包含修改的word版本, 可免费下载阅览学习, 也可作为数学建模相关课程作业修改上交:

链接:https://pan.baidu.com/s/1HxzDk3q0p6y2xpuJyxPgvw?pwd=qtnc

提取码:qtnc

随着人民生活水平的提高和社会经济的发展,机场在城市的地位越来越重要,而出租车则承担了机场相当一部分的乘客集散量,合理调配出租车载客方式和疏通乘客流量变得日益重要。本文针对机场的出租车问题进行研究,探讨司机决策行为的影响因素和提高乘客效率的方案,给机场管理部门提供了一些合理建议。

针对问题一,本文首先建立了出租车和乘客排队理论模型(M/M/s/∞),该模型是问题分析的基础,并结合多层次综合评价模型分析,定性和定量地建立排队长度与载客效率μ之间的联系,进一步指出当蓄车池里的排队数量长度满足LS<P1(指的是排队数量低于一定指标)时,可以直接选择A方案,即前往到达区等候载客返回市区,否则选择B方案返回市区拉客。

针对问题二,合理收集国内机场及其城市出租车的数据,以上海市浦东机场为例,通过分析日夜间收费标准、65%以上乘客目的地距离、出租车司机的正常单位时间成本等因素成功预测了方案A的最大长度,结合每个时间段内航班数量和乘客排队滞后效应曲线得到完整的全时段的最大排队长度,可以快速判断哪个方案更为稳妥。在获得了基准载客效率之后,可以通过评价分析方法进一步考虑月份、节假日和天气等因素对模型的依赖性,引入载客效率放大因子,进一步完善排队时间成本的预测。

针对问题三,通过分析1个M/M/2/∞排队系统和2个M/M/1/∞排队子系统优劣之后,发现单排队方式比双排队方式要优越,这是在对排队系统进行统筹和设计时候需要注意的关键因素。接着本文提出,在单个“上车点”情况下,M/M/2×2/∞单排队矩阵式系统和M/M/2×3/∞单排队矩阵式系统能够明显提升乘车效率。最后创新性地提出多“上车点”M/M/2×2/∞单排队矩阵式系统能够达到最高的乘车效率。

针对问题四,本文建立了出租车司机收益均衡模型,通过算例验证了收益均衡模型的合理性和实用性,最后给出优先安排方案,在合理范围内允许出租车司机“插队”进场或者直接载客。

关键字: 排队论  评价模型  单排队矩阵式系统   收益均衡模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值