题目描述:
有 N 堆石子,每堆的石子数量分别为 a1,a2,…,aN。
你可以对石子堆进行合并操作,将两个相邻的石子堆合并为一个石子堆,例如,如果 a=[1,2,3,4,5],合并第 2,3 堆石子,则石子堆集合变为 a=[1,5,4,5]。
我们希望通过尽可能少的操作,使得石子堆集合中的每堆石子的数量都相同。
请你输出所需的最少操作次数。
本题一定有解,因为可以将所有石子堆合并为一堆。
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含整数 N。
第二行包含 N 个整数 a1,a2,…,aN。
输出格式
每组数据输出一行结果。
数据范围
1≤T≤10,
1≤N≤105,
0≤ai≤106,
∑i=1nai≤106,
每个输入所有 N 之和不超过 105。
输入样例:
3
6
1 2 3 1 1 1
3
2 2 3
5
0 0 0 0 0
输出样例:
3
2
0
样例解释
第一组数据,只需要用 3 个操作来完成:
1 2 3 1 1 1
-> 3 3 1 1 1
-> 3 3 2 1
-> 3 3 3
第二组数据,只需要用 2 个操作来完成:
2 2 3
-> 2 5
-> 7
第三组数据,我们什么都不需要做。
题目分析:
枚举加上相关数论知识
首先分析时间复杂度,N为10得5次方,那么通常情况下解为nlogn或者n。
然后分析题目,我们所求得为最少移动得操作数,设为x。假设最后移动好的堆数为y堆,因为每次操作后总堆数会减一,那么x=N-y,且y*每堆的数目应该等于原来的总和。
由此我们可以得到最后每堆的个数(设为t)=总数(设为sum)/N-x。可以写为N-x=sum/t。现在我们想让x最小,即让t最小即可。而且t为sum的约数,所以我们从t最小的情况下枚举,也就是堆数最大即可。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n;
int w[N];
bool check(int cnt){
int s=0;
for(int i=0;i<=n;i++){
s=s+w[i];
if(s>cnt) return false;
if(s==cnt){
s=0;
}
}
return true;
}
int main(){
int T;
cin>>T;
while(T--){
int sum=0;
cin>>n;
for(int i=1;i<=n;i++){
cin>>w[i];
sum+=w[i];
}
for(int i=n;i;i--){
if(sum%i==0&&check(sum/i)){
cout<<n-i<<endl;
break;
}
}
}
return 0;
}

文章介绍了一个关于石子堆的问题,目标是通过合并相邻石子堆使所有堆的石子数相等,要求找出最少的操作次数。解决方案涉及到枚举和数论知识,通过计算每堆石子的平均数并检查是否能通过合并达到这个平均数来找到最优解。
577

被折叠的 条评论
为什么被折叠?



