教室外有 N 棵树(树的编号从 0∼N−1),根据不同的位置和树种,学校要对其上不同的药。
因为树的排列成线性,且非常长,我们可以将它们看作一条直线给他们编号。
对于树的药是成区间分布,比如 3 \sim 53∼5 号的树靠近下水道,所以他们要用驱蚊虫的药, 20 \sim 2620∼26 号的树,他们排水不好,容易涝所以要给他们用点促进根系的药 \cdots⋯诸如此类。
每种不同的药要花不同的钱。
现在已知共有 M个这样的区间,并且给你每个区间花的钱,问最后这些树木要花多少药费。
输入描述
每组输入的第一行有两个整数 N和 M。N 代表马路的共计多少棵树,M代表区间的数目,N 和 M 之间用一个空格隔开。
接下来的 M 行每行包含三个不同的整数,用一个空格隔开,分别表示一个区域的起始点 L 和终止点 R的坐标,以及花费。
1≤L≤R≤N≤1e6,1≤M≤1e5,保证花费总和不超过 int
范围。
输出描述
输出包括一行,这一行只包含一个整数,所有的花费。
输入输出样例
示例
输入
500 3
150 300 4
100 200 20
470 471 19
输出
2662
运行限制
- 最大运行时间:1s
- 最大运行内存: 128M
简单的前缀和与差分数组的应用
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6;
int b[N];
int n,m;
int main(){
cin>>n>>m;
while(m--){
int l,r,w;
cin>>l>>r>>w;
b[l]=b[l]+w; //原数组即为差分数组,直接操作即可
b[r+1]=b[r+1]-w; //对于每个 [l,r] 区间的加减操作都转化为对端点 l,r+1 的操作。
}
for(int i=1;i<=n;i++){
b[i]=b[i]+b[i-1]; //前缀和还原
}
int sum=0;
for(int i=1;i<=n;i++){
sum+=b[i];
}
cout<<sum<<endl;
}