【导数术】3.隐零点

3.隐零点

  • 基本方法:设而不求,整体代换

一般而言针对导数问题中导函数零点不可求的情况,判断出范围以后将导函数零点所满足的方程整体代入到最值表达式求出最值进行后续分析。一般而言难以求出最值,只能求出最值的范围,因此适用于整数问题。

P r a . 3.1 Pra.3.1 Pra.3.1

已知函数 f ( x ) = x ln ⁡ x − k x f(x)=x\ln x-kx f(x)=xlnxkx

(1)求 f ( x ) f(x) f(x)的单调区间;

(2)若对于 ∀ x ∈ ( 2 , + ∞ ) , k ∈ Z \forall x\in(2,+\infty),k\in \Z x(2,+),kZ,恒有:
f ( x ) + 2 k + 1 > 0 f(x)+2k+1>0 f(x)+2k+1>0
试求整数 k k k的最大值。

第小一问略。

  • S o l u t i o n Solution Solution:等价为下式在 x > 2 x>2 x>2时恒成立

h ( x ) : = x ln ⁡ x + 1 x − 2 > k h(x):=\frac{x\ln x+1}{x-2}>k h(x):=x2xlnx+1>k

求导得:
h ′ ( x ) = x − 2 ln ⁡ x − 3 ( x − 2 ) 2 h'(x)=\frac{x-2\ln x-3}{(x-2)^2} h(x)=(x2)2x2lnx3
而显然 p ( x ) = x − 2 l n x − 3 p(x)=x-2lnx-3 p(x)=x2lnx3是单增的,这是因为:
p ′ ( x ) = 1 − 2 x = x − 2 x > 0 p'(x)=1-\frac{2}{x}=\frac{x-2}{x}>0 p(x)=1x2=xx2>0
而:
p ( 7 ) = 4 − 2 ln ⁡ 7 = 2 ln ⁡ e 2 7 ≥ 2 ln ⁡ 2. 7 2 7 > 0 p ( 6 ) = 3 − 2 ln ⁡ 3 = ln ⁡ e 3 36 < ln ⁡ 3 3 36 < 0 \begin{aligned} &p(7)=4-2\ln 7=2\ln\frac{e^2}{7}\geq2\ln\frac{2.7^2}{7}>0\\ &p(6)=3-2\ln 3=\ln\frac{e^3}{36}<\ln\frac{3^3}{36}<0 \end{aligned} p(7)=42ln7=2ln7e22ln72.72>0p(6)=32ln3=ln36e3<ln3633<0
说明存在 x 0 ∈ ( 6 , 7 ) , s . t : p ( x 0 ) = 0 x_0\in(6,7),s.t:p(x_0)=0 x0(6,7),s.t:p(x0)=0

x 0 − 2 l n x 0 − 3 = 0 x_0-2lnx_0-3=0 x02lnx03=0

那么 h ( x ) h(x) h(x) ( 2 , x 0 ) (2,x_0) (2,x0)递减, ( x 0 , + ∞ ) (x_0,+\infty) (x0,+)递增,最小值为:
h ( x ) m i n = h ( x 0 ) = x 0 ln ⁡ x 0 + 1 x 0 − 2 = x 0 − 1 2 ∈ ( 5 2 , 3 ) h(x)_{min}=h(x_0)=\frac{x_0\ln x_0+1}{x_0-2}=\frac{x_0-1}{2}\in(\frac{5}{2},3) h(x)min=h(x0)=x02x0lnx0+1=2x01(25,3)
k ∈ Z k\in \Z kZ,所以 k max ⁡ = 2 k_{\max}=2 kmax=2

P r a . 3.2 Pra.3.2 Pra.3.2

已知函数 f ( x ) = x + x ln ⁡ x f(x)=x+x\ln x f(x)=x+xlnx,设 k ∈ Z k\in \Z kZ,若 k ( x − 2 ) < f ( x ) k(x-2)<f(x) k(x2)<f(x)对于 ∀ x ∈ ( 2 , + ∞ ) \forall x\in(2,+\infty) x(2,+)恒成立,求 k k k的最大值

  • S o l u t i o n Solution Solution:隐零点,导数零点范围 ( 8 , 9 ) (8,9) (8,9) k max ⁡ = 4 k_{\max}=4 kmax=4
P r a . 3.3 Pra.3.3 Pra.3.3:[2016年全国II卷]

(1)讨论函数 f ( x ) = x − 2 x + 2 e x f(x)=\frac{x-2}{x+2}e^x f(x)=x+2x2ex的单调性,并证明 x > 0 x>0 x>0时:
( x − 2 ) e x + x + 2 > 0 (x-2)e^x+x+2>0 x2)ex+x+2>0
(2)证明:当 a ∈ [ 0 , 1 ) a\in[0,1) a[0,1)时,函数 g ( x ) = e x − a x − a x 2 ( x > 0 ) g(x)=\frac{e^x-ax-a}{x^2}(x>0) g(x)=x2exaxa(x>0)有最小值,设 g ( x ) g(x) g(x)的最小值为 h ( a ) h(a) h(a),求函数 h ( a ) h(a) h(a),求函数 h ( a ) h(a) h(a)的值域.

  • S o l u t i o n Solution Solution:(1) ( − ∞ , − 2 ) (-\infty,-2) (,2) ( − 2 , + ∞ ) (-2,+\infty) (2,+)单增;(2)易证,略;值域: ( 1 2 , e 2 4 ] (\frac 12,\frac{e^2}{4}] (21,4e2]
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值