文章目录
6.端点效应
(1)核心原理
端点效应即考虑原问题成立的某些端点或者特殊情况,预先缩小参数的取值范围,达到减少讨论的目的。
若缩小后的参数范围恰能使得原问题成立,则可以开始充分性证明;若不然,在更小的范围内继续讨论原问题。
(1-1)原函数端点效应
举例为:设 f ( x ) ≥ 0 ( x ≥ x 0 ) f(x)\geq 0(x\geq x_0) f(x)≥0(x≥x0)恒成立,则任取一个 x ≥ x 0 x\geq x_0 x≥x0都会使得 f ( x ) ≥ 0 f(x)\geq 0 f(x)≥0
从而可以缩小参数范围,有时候代入的端点甚至就是原问题的解。
一般我们取的 x = 0 , 1 , e , e − 1 x=0,1,e,e^{-1} x=0,1,e,e−1,这种端点效应称为原函数端点效应。
(1-2)导函数端点效应
举例为:设 f ( x ) ≥ 0 ( x ≥ x 0 ) f(x)\geq 0(x\geq x_0) f(x)≥0(x≥x0)恒成立且 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0
要想使得
f
(
x
)
≥
0
f(x)\geq 0
f(x)≥0,必然有:
f
′
(
x
0
)
≥
0
f'(x_0)\geq0
f′(x0)≥0
通过这个导函数满足的不等式缩小参数范围,这种端点效应称为导函数端点效应。
(2)练习
P r a . 6.1 Pra.6.1 Pra.6.1
已知函数 f ( x ) = e x − x 2 ln x − e . f(x)=e^x-x^2\ln x -e. f(x)=ex−x2lnx−e.
(1)求曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线方程;
(2)是否存在正整数 m m m,使得 f ( x ) ≥ m x − e f(x)\geq mx-e f(x)≥mx−e在 x > 0 x>0 x>0时恒成立?若存在求出 m m m的最大值,不存在请说明理由。
- S o l u t i o n Solution Solution:
(1) y = ( e − 1 ) ( x − 1 ) y=(e-1)(x-1) y=(e−1)(x−1)
(2)思路:必要性 ⇒ m max = 2 \Rightarrow m_{\max}=2 ⇒mmax=2,充分性证明 m = 2 m=2 m=2成立
[必要性] 端点效应: f ( 1 ) ≥ m − e ⇒ m ≤ e ⇒ m max = 2 f(1)\geq m-e\Rightarrow m\leq e\Rightarrow m_{\max}=2 f(1)≥m−e⇒m≤e⇒mmax=2
[充分性] 以下证明
m
=
2
m=2
m=2成立,即证明:
e
x
−
x
2
ln
x
−
2
x
≥
0
e^x-x^2\ln x-2x\geq0
ex−x2lnx−2x≥0
对数处理技巧,等价于:
p
(
x
)
:
=
e
x
x
2
−
ln
x
−
2
x
≥
0
p(x):=\frac{e^x}{x^2}-\ln x-\frac 2 x\geq0
p(x):=x2ex−lnx−x2≥0
而:
p
′
(
x
)
=
x
−
2
x
2
⋅
(
e
x
−
1
)
p'(x)=\frac{x-2}{x^2}\cdot (e^x-1)
p′(x)=x2x−2⋅(ex−1)
所以
p
(
x
)
p(x)
p(x)在
(
0
,
2
)
(0,2)
(0,2)递减,
(
2
,
+
∞
)
(2,+\infty)
(2,+∞)递增,最小值为:
p
(
x
)
min
=
p
(
2
)
=
e
2
4
−
ln
2
−
1
>
7
4
−
0.7
−
1
>
0
p(x)_{\min}=p(2)=\frac {e^2}{4}-\ln 2-1>\frac 7 4-0.7-1>0
p(x)min=p(2)=4e2−ln2−1>47−0.7−1>0
这就证明了
m
=
2
m=2
m=2的充分性。
注: ln 2 ≈ 0.69 < 0.7 , e 2 = 7.389 > 7 \ln2\approx 0.69<0.7,e^2=7.389>7 ln2≈0.69<0.7,e2=7.389>7
P r a . 6.2 Pra.6.2 Pra.6.2
已知函数 f ( x ) = a ln x x + 1 + b x f(x)=\frac {a\ln x}{x + 1}+\frac b x f(x)=x+1alnx+xb,曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线方程是 x + 2 y − 3 = 0. x+2y-3=0. x+2y−3=0.
(1)求 a , b a,b a,b的值;
(2)
x
>
0
,
x
≠
1
x>0,x\neq1
x>0,x=1时,
f
(
x
)
>
ln
x
x
−
1
+
k
x
f(x)>\frac {\ln x}{x-1}+\frac k x
f(x)>x−1lnx+xk
恒成立,求 k k k的取值范围.
- S o l u t i o n Solution Solution: a = b = 1 , k ∈ ( − ∞ , 0 ] a=b=1,k\in(-\infty,0] a=b=1,k∈(−∞,0]
第一小问略,第二小问等价于:
t
(
x
)
=
ln
x
x
+
1
+
1
x
−
ln
x
x
−
1
−
k
x
=
1
1
−
x
2
[
2
ln
x
+
(
k
−
1
)
(
x
−
1
x
)
]
\begin{aligned} t(x)&=\frac{\ln x}{x+1}+\frac{1}{x}-\frac{\ln x}{x-1}-\frac{k}{x}\\ &=\frac{1}{1-x^2}[2\ln x+(k-1)(x-\frac 1 x)] \end{aligned}
t(x)=x+1lnx+x1−x−1lnx−xk=1−x21[2lnx+(k−1)(x−x1)]
所以上述不等式等价于:
{
∀
x
∈
(
0
,
1
)
,
2
ln
x
+
(
k
−
1
)
(
x
−
1
x
)
>
0
∀
x
∈
(
1
,
+
∞
)
,
2
ln
x
+
(
k
−
1
)
(
x
−
1
x
)
<
0
\left\{\begin{aligned}&\forall x\in(0,1),2\ln x+(k-1)(x-\frac 1 x)>0 \\&\forall x\in(1,+\infty),2\ln x+(k-1)(x-\frac 1 x)<0 \end{aligned} \right.
⎩
⎨
⎧∀x∈(0,1),2lnx+(k−1)(x−x1)>0∀x∈(1,+∞),2lnx+(k−1)(x−x1)<0
令
h
(
x
)
=
2
ln
x
+
(
k
−
1
)
(
x
−
1
x
)
h(x)=2\ln x+(k-1)(x-\frac 1 x)
h(x)=2lnx+(k−1)(x−x1),那么:
h
′
(
x
)
=
1
x
2
[
(
k
−
1
)
x
2
+
2
x
+
(
k
−
1
)
]
h'(x)=\frac 1 {x^2}[(k-1)x^2+2x+(k-1)]
h′(x)=x21[(k−1)x2+2x+(k−1)]
不妨令
g
(
x
)
=
(
k
−
1
)
x
2
+
2
x
+
(
k
−
1
)
g(x)=(k-1)x^2+2x+(k-1)
g(x)=(k−1)x2+2x+(k−1)
由于: h ( 1 ) = 0 h(1)=0 h(1)=0, x > 1 x>1 x>1时 h ( x ) < 0 h(x)<0 h(x)<0
[端点效应] h ′ ( 1 ) ≤ 0 ⇒ k ≤ 0 h'(1)\leq 0\Rightarrow k\leq 0 h′(1)≤0⇒k≤0
此时考虑 g ( x ) g(x) g(x): k − 1 < 0 , Δ = 4 − 4 ( 1 − k ) 2 < 0 k-1<0,\Delta=4-4(1-k)^2<0 k−1<0,Δ=4−4(1−k)2<0
说明 g ′ ( x ) < 0 ⇒ h ( x ) g'(x)<0\Rightarrow h(x) g′(x)<0⇒h(x)递减 ⇒ h ( x ) > 0 ( x < 1 ) , h ( x ) < 0 ( x > 1 ) \Rightarrow h(x)>0(x<1),h(x)<0(x>1) ⇒h(x)>0(x<1),h(x)<0(x>1)
不等式成立,说明 k ≤ 0 k\leq 0 k≤0成立,故: k ∈ ( − ∞ , 0 ] k\in(-\infty,0] k∈(−∞,0]
P r a . 6.3 Pra.6.3 Pra.6.3
若对于任意 x ∈ [ 0 , + ∞ ) x\in[0,+\infty) x∈[0,+∞),不等式 f ( x ) = ( x + 1 ) ln ( x + 1 ) − 1 2 a x 2 − a x ≤ 0 f(x)=(x+1)\ln (x+1)-\frac 1 2 ax^2-ax\leq 0 f(x)=(x+1)ln(x+1)−21ax2−ax≤0恒成立,求 a a a范围.
- S o l u t i o n Solution Solution: a ∈ [ 1 , + ∞ ) a\in[1,+\infty) a∈[1,+∞)
[端点效应] 注意到 f ( 1 ) = 0 f(1)=0 f(1)=0,于是必然有 f ′ ( 1 ) ≤ 0 ⇒ a ≥ 1 f'(1)\leq 0\Rightarrow a\geq 1 f′(1)≤0⇒a≥1
而 a ≥ 1 a\geq 1 a≥1时:
f ′ ( x ) = ln ( x + 1 ) + 1 − a x − a f'(x)=\ln(x+1)+1-ax-a f′(x)=ln(x+1)+1−ax−a, f ′ ′ ( x ) = 1 x + 1 − a ≤ 1 − a ≤ 0 f''(x)=\frac 1{x+1}-a\leq 1-a\leq 0 f′′(x)=x+11−a≤1−a≤0
说明 f ′ ( x ) f'(x) f′(x)单减 ⇒ f ′ ( x ) ≤ f ′ ( 0 ) ≤ 0 \Rightarrow f'(x)\leq f'(0) \leq 0 ⇒f′(x)≤f′(0)≤0
必然有: f ( x ) f(x) f(x)单减 ⇒ f ( x ) ≤ f ( 0 ) = 0 \Rightarrow f(x)\leq f(0)=0 ⇒f(x)≤f(0)=0
说明 a ≥ 1 a \geq 1 a≥1成立,故 a ∈ [ 1 , + ∞ ) a\in[1,+\infty) a∈[1,+∞)
P r a . 6.4 Pra.6.4 Pra.6.4
已知 x > 0 x>0 x>0时, f ( x ) = e x + a ln ( 1 − x ) − 1 < 0 f(x)=e^x+a\ln (1-x)-1<0 f(x)=ex+aln(1−x)−1<0恒成立,求 a a a的取值范围
- S o l u t i o n Solution Solution: [ 1 , + ∞ ) [1,+\infty) [1,+∞)
[端点效应] 注意到 f ( 0 ) = 0 f(0)=0 f(0)=0,那么必然有: f ′ ( 0 ) ≤ 0 ⇒ a ≥ 1 f'(0) \leq 0 \Rightarrow a\geq1 f′(0)≤0⇒a≥1
而
a
≥
1
a\geq 1
a≥1时:
f
′
(
x
)
=
e
x
+
−
a
1
−
x
≤
e
x
+
1
x
−
1
=
(
x
−
1
)
e
x
+
1
x
−
1
f'(x)=e^x+\frac{-a}{1-x}\leq e^x+\frac{1}{x-1}=\frac{(x-1)e^x+1}{x-1}
f′(x)=ex+1−x−a≤ex+x−11=x−1(x−1)ex+1
构造
u
=
(
x
−
1
)
e
x
+
1
,
u
′
(
x
)
=
x
e
x
>
0
,
u
(
0
)
=
0
⇒
u
(
x
)
≥
0
u=(x-1)e^x+1,u'(x)=xe^x>0,u(0)=0\Rightarrow u(x)\geq0
u=(x−1)ex+1,u′(x)=xex>0,u(0)=0⇒u(x)≥0
这说明 f ′ ( x ) < 0 f'(x)<0 f′(x)<0恒成立,于是 f ( x ) < f ( 0 ) = 0 f(x)<f(0)=0 f(x)<f(0)=0恒成立。
故: a ∈ [ 1 , + ∞ ) a\in[1,+\infty) a∈[1,+∞)
[另解] 充分性证明也可以利用: e x ≥ x + 1 ( x ∈ R ) e^x\geq x+1(x\in \R) ex≥x+1(x∈R)
用 − x -x −x替代 x x x,得: e − x ≥ 1 − x ( x ∈ R ) e^{-x}\geq 1-x(x\in\R) e−x≥1−x(x∈R)
当
x
∈
[
0
,
1
)
x\in[0,1)
x∈[0,1)时,不等式两侧均为正数,取倒数可得:
e
x
≤
1
1
−
x
,
x
∈
[
0
,
1
)
e^x\leq\frac{1}{1-x},x\in[0,1)
ex≤1−x1,x∈[0,1)
于是:
f
′
(
x
)
≤
1
1
−
x
+
−
a
1
−
x
=
1
−
a
1
−
x
≤
0
f'(x)\leq \frac{1}{1-x}+\frac{-a}{1-x}=\frac{1-a}{1-x}\leq0
f′(x)≤1−x1+1−x−a=1−x1−a≤0
说明
f
′
(
x
)
<
0
f'(x)<0
f′(x)<0恒成立
P r a . 6.5 Pra.6.5 Pra.6.5
已知函数 f ( x ) = ln a x + b x f(x)=\ln ax+bx f(x)=lnax+bx在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线是 y = 0. y=0. y=0.
(1)求函数 f ( x ) f(x) f(x)的极值;
(2)当
m
<
0
m<0
m<0时,
m
x
2
e
x
≥
f
(
x
)
+
1
−
e
e
x
\frac {mx^2}{e^x}\geq f(x)+\frac{1-e}{e}x
exmx2≥f(x)+e1−ex
恒成立,求
m
m
m的取值范围.
- S o l u t i o n Solution Solution: a = e , b = − 1 a=e,b=-1 a=e,b=−1, 1 − e ≤ m < 0 1-e\leq m <0 1−e≤m<0
第一小问略,第二小问:
[端点效应] 考虑到 x = 1 x=1 x=1时也成立 ⇒ m ≥ 1 − e \Rightarrow m\geq 1-e ⇒m≥1−e
当
m
≥
1
−
e
m\geq 1-e
m≥1−e时,有:
m
x
2
≥
(
1
−
e
)
x
2
mx^2\geq(1-e)x^2
mx2≥(1−e)x2
而:
(
1
−
e
)
x
2
e
x
−
ln
e
x
+
x
−
1
−
e
e
x
=
(
1
−
e
)
x
⋅
(
x
e
x
−
1
e
)
+
x
−
ln
x
−
1
≥
(
1
−
e
)
x
⋅
(
1
e
−
1
e
)
+
(
ln
x
+
1
−
ln
x
−
1
)
=
0
\begin{aligned}\frac{(1-e)x^2}{e^x}-\ln ex+x-\frac{1-e}{e}x&=(1-e)x\cdot(\frac{x}{e^x}-\frac 1 e)+x-\ln x-1\\&\geq(1-e)x\cdot(\frac 1 e-\frac 1 e)+(\ln x+1-\ln x-1)=0 \end{aligned}
ex(1−e)x2−lnex+x−e1−ex=(1−e)x⋅(exx−e1)+x−lnx−1≥(1−e)x⋅(e1−e1)+(lnx+1−lnx−1)=0
故
m
∈
[
1
−
e
,
0
)
m\in[1-e,0)
m∈[1−e,0)
P r a . 6.6 Pra.6.6 Pra.6.6
已知函数 f ( x ) = sin x + x 3 6 − m x . f(x)=\sin x+\frac{x^3}{6}-mx. f(x)=sinx+6x3−mx.
(1)若 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)上单增,求实数 m m m的取值范围;
(2)若对于
∀
x
∈
[
0
,
+
∞
)
\forall x\in[0,+\infty)
∀x∈[0,+∞),不等式
sin
x
−
cos
x
≤
e
a
x
−
2
\sin x-\cos x \leq e^{ax}-2
sinx−cosx≤eax−2
恒成立,求
a
a
a的取值范围.
- S o l u t i o n Solution Solution: m ≤ 1 , a ≥ 1 m\leq1, a\geq 1 m≤1,a≥1
第一小问略,第二小问:
不妨令: g ( x ) = sin x − cos x − e a x + 2 g(x)=\sin x-\cos x-e^{ax}+2 g(x)=sinx−cosx−eax+2
[端点效应] g ( 0 ) = 0 ⇒ g ′ ( 0 ) ≤ 0 ⇒ a ≥ 1 g(0)=0\Rightarrow g'(0)\leq 0\Rightarrow a\geq 1 g(0)=0⇒g′(0)≤0⇒a≥1
而
a
≥
1
a\geq 1
a≥1时:
g
(
x
)
≤
sin
x
−
cos
x
−
e
x
−
2
≤
sin
x
−
cos
x
−
(
x
−
1
)
−
2
=
sin
x
−
cos
x
−
x
−
1
≤
x
−
cos
x
−
x
−
1
≤
0
\begin{aligned} g(x)\leq \sin x-\cos x-e^x-2&\leq \sin x-\cos x-(x-1)-2\\ &=\sin x-\cos x-x-1\\ &\leq x-\cos x-x-1\leq 0 \end{aligned}
g(x)≤sinx−cosx−ex−2≤sinx−cosx−(x−1)−2=sinx−cosx−x−1≤x−cosx−x−1≤0
故 a ≥ 1 a\geq 1 a≥1时成立,所以 a a a的取值范围是 [ 1 , + ∞ ) [1,+\infty) [1,+∞)