【导数术】15.切线放缩

15.切线放缩

(1)核心原理

利用切线进行放缩。

可以看成一种局部线性化的思想。

(2)练习

P r a . 15.1 Pra.15.1 Pra.15.1

已知正实数 a , b , c a,b,c a,b,c,且 a + b + c = 3 a+b+c=3 a+b+c=3,求证:
a 2 + b 2 + c 2 ≥ 3 a^2+b^2+c^2\geq3 a2+b2+c23

  • S o l u t i o n Solution Solution:取等条件 a = b = c = 1 a=b=c=1 a=b=c=1,不妨构造函数 y = x 2 y=x^2 y=x2

切线放缩有: x 2 ≥ 2 x − 1 x^2\geq 2x-1 x22x1

于是:
a 2 + b 2 + c 2 ≥ 2 ( a + b + c ) − 3 = 3 a^2+b^2+c^2\geq2(a+b+c)-3=3 a2+b2+c22(a+b+c)3=3

P r a . 15.2 Pra.15.2 Pra.15.2 [双切线放缩]

已知函数 f ( x ) = 4 x − x 4 f(x)=4x-x^4 f(x)=4xx4.

(1)求 f ( x ) f(x) f(x)的单调区间;

(2)设曲线 y = f ( x ) y=f(x) y=f(x) x x x轴正半轴的交点为 P P P,曲线在 P P P处的切线方程为 y = g ( x ) y=g(x) y=g(x)

求证:
f ( x ) ≤ g ( x ) , ∀ x > 0 f(x)\leq g(x),\forall x>0 f(x)g(x),x>0
(3)设方程 f ( x ) = a f(x)=a f(x)=a有两个实数根 x 1 < x 2 x_1<x_2 x1<x2

求证:
x 2 − x 1 ≤ − a 3 + 4 1 3 x_2-x_1\leq-\frac{a}{3}+4^{\frac{1}{3}} x2x13a+431

  • S o l u t i o n Solution Solution:(1)略

(2)证明:设 P ( x 0 , 0 ) P(x_0,0) P(x0,0),由题意 x 0 = 4 1 3 x_0=4^{\frac 1 3} x0=431

曲线 y = f ( x ) y=f(x) y=f(x) P P P的切线方程为 y = g ( x ) = f ′ ( x 0 ) ( x − x 0 ) y=g(x)=f'(x_0)(x-x_0) y=g(x)=f(x0)(xx0)

构造 F ( x ) = f ( x ) − g ( x ) F(x)=f(x)-g(x) F(x)=f(x)g(x),注意到 F ′ ( x 0 ) = 0 F'(x_0)=0 F(x0)=0

F ′ ( x ) = f ′ ( x ) − f ′ ( x 0 ) F'(x)=f'(x)-f'(x_0) F(x)=f(x)f(x0),而 f ′ ( x ) = 4 − 4 x 3 f'(x)=4-4x^3 f(x)=44x3 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)单减

因此 F ′ ( x ) F'(x) F(x) ( − ∞ , x 0 ) (-\infty,x_0) (,x0)恒正, F ′ ( x ) F'(x) F(x) ( x 0 , + ∞ ) (x_0,+\infty) (x0,+)恒负

所以 F ( x ) ≤ F ( x 0 ) = 0 F(x)\leq F(x_0)=0 F(x)F(x0)=0

这就证明了第二问。

(3)

[双切线放缩]

示意图如下:

在这里插入图片描述
f ( x ) f(x) f(x)分别放缩为 B F 、 D I BF、DI BFDI对应的直线方程,即过两个零点的切线。

易得 g ( x ) = − 12 ( x − 4 1 3 ) g(x)=-12(x-4^{\frac 1 3}) g(x)=12(x431)

不妨设方程 g ( x ) = a g(x)=a g(x)=a的根为 x 2 ′ x_2' x2,可得: x 2 ′ = − a 12 + 4 1 3 x_2'=-\frac{a}{12}+4^{\frac 1 3} x2=12a+431

因为 g ( x ) g(x) g(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)单调递减,

又由(2)知 g ( x 2 ) ≥ f ( x 2 ) = a = g ( x 2 ′ ) g(x_2)\geq f(x_2)=a=g(x_2') g(x2)f(x2)=a=g(x2)

因此, x 2 ≤ x 2 ′ x_2\leq x_2' x2x2

设曲线 y = f ( x ) y=f(x) y=f(x)在原点处的切线为 y = h ( x ) y=h(x) y=h(x),可得 h ( x ) = 4 x h(x)=4x h(x)=4x

对任意的 x ∈ ( − ∞ , + ∞ ) x\in(-\infty,+\infty) x(,+)均有 f ( x ) − h ( x ) = − x 4 ≤ 0 f(x)-h(x)=-x^4\leq 0 f(x)h(x)=x40,即 f ( x ) ≤ h ( x ) f(x)\leq h(x) f(x)h(x)

设方程 h ( x ) = a h(x)=a h(x)=a的根为 x 1 ′ x_1' x1,那么 x 1 ′ = a 4 x_1'=\frac{a}{4} x1=4a

考虑到 h ( x ) h(x) h(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)单调递增,

且: h ( x 1 ′ ) = a = f ( x 1 ) ≤ h ( x 1 ) h(x_1')=a=f(x_1)\leq h(x_1) h(x1)=a=f(x1)h(x1)

因此: x 1 ′ ≤ x 1 x_1'\leq x_1 x1x1

所以: x 2 − x 1 ≤ x 2 ′ − x 1 ′ = − a 3 + 4 1 3 x_2-x_1\leq x_2'-x_1'=-\frac{a}{3}+4^\frac{1}{3} x2x1x2x1=3a+431

P r a . 15.3 Pra.15.3 Pra.15.3

设函数 f ( x ) = ( x + 1 ) ( e x − 1 ) f(x)=(x+1)(e^x-1) f(x)=(x+1)(ex1).

若方程 f ( x ) = m f(x)=m f(x)=m有两个实数根 x 1 < x 2 x_1<x_2 x1<x2,求证:
x 2 − x 1 ≤ 1 + m ( 1 − 2 e ) 1 − e x_2-x_1\leq1+\frac{m(1-2e)}{1-e} x2x11+1em(12e)

  • S o l u t i o n Solution Solution:同上面的题目,留作习题,答案略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值