R语言使用dplyr包的filter函数过滤dataframe数据、使用in关键字基于组合逻辑排除不需要的数据行

本文介绍了R语言如何使用dplyr包的filter函数来过滤dataframe数据,并利用in关键字进行组合逻辑判断,排除不需要的数据行。通过实例展示了数据索引和仿真实验,帮助理解R语言强大的数据处理能力。

R语言使用dplyr包的filter函数过滤dataframe数据、使用in关键字基于组合逻辑排除不需要的数据行

目录

R语言使用dplyr包的filter函数过滤dataframe数据、使用in关键字基于组合逻辑排除不需要的数据行

R语言数据索引(subset indexing)

仿真数据

 R语言使用dplyr包的filter函数过滤dataframe数据、使用in关键字基于组合逻辑排除不需要的数据行


R语言数据索引(subset indexing)

R语言具有访问数据对象元素的强大索引特性。这些特征可以用来选择和排除变量和样本。

例如、筛选指定的数据列(变量)、排除指定的数据;

例如、筛选满足条件的数据行、筛选不满足条件的数据行;

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值