PSM倾向性评分分析介绍、spss进行倾向性评分分析示例

本文介绍了PSM倾向性评分分析的原理和在观察性研究中减少混杂因素的重要性,详细阐述了如何使用SPSS进行倾向性评分分析,通过实例展示了匹配过程和结果解释,帮助理解其在数据挖掘和机器学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PSM倾向性评分分析介绍、spss进行倾向性评分分析示例

目录

PSM倾向性评分分析介绍、spss进行倾向性评分分析示例

PSM倾向性评分分析

spss进行倾向性评分分析示例


PSM倾向性评分分析

当我们需要在观察性研究中对比两组不同人群的不同特征或者疾病发生发展时,两组人群往往会存在许多潜在的混杂因素的不均衡,而这些不均衡会使我们的比较结果产生偏倚。在实验性研究中,我们可以通过随机分组尽可能消除这种混杂因素的不均衡,但在观察性研究(包括真实世界研究)中我们无法对研究对象进行随机分组,因此,我们需要使用额外的方法对混杂因素进行均衡,那就是倾向性评分匹配,倾向性评分匹配的方法对两组人群根据选择的混杂因素进行匹配,使得两组人群的混杂因素尽可能均衡,从而减少混杂因素对结果的混杂效应。

倾向性评分匹配(PSM):就是通过一定的统计学方法对试验组和对照组进行筛选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值