R语言ROC曲线可视化:使用ggplot2包绘制ROC曲线、logistic回归模型构建、使用pROC包绘制ROC曲线

R语言ROC曲线可视化:使用ggplot2包绘制ROC曲线、logistic回归模型构建、使用pROC包绘制ROC曲线

目录

R语言ROC曲线可视化:使用ggplot2包绘制ROC曲线、logistic回归模型构建、使用pROC包绘制ROC曲线

logistic回归模型构建

使用pROC包


 

Logistic回归是一种统计学习方法,属于广义线性模型,可以用来进行二分类或者多分类模型的构建。为了评估logistic回归模型的效能,我们可以查看以下两个度量:

敏感度(sensitivity):当结果确实是阳性的时候,模型预测一个阳性结果的概率。

特异性(specificity):当结果确实为阴性时,模型预测一项观察结果为阴性的概率。

将这两个指标可视化的一个简单方法是绘制ROC曲线,ROC就是一个显示logistic回归模型敏感性和特异性的可视化方式。

logistic回归模型构建

#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值