qq_41196612的博客

私信 关注
三只佩奇不结义
码龄3年

士人有百折不回之真心,方有万变不穷之妙用。

  • 56,922
    被访问量
  • 55
    原创文章
  • 76,596
    作者排名
  • 1,875
    粉丝数量
  • 毕业院校 JiaLiDun University
  • 于 2017-11-27 加入CSDN
获得成就
  • 获得106次点赞
  • 内容获得30次评论
  • 获得446次收藏
荣誉勋章
兴趣领域
  • #算法
    #集成学习#排序算法#分类#NLP#回归#PyTorch#scikit-learn#TensorFlow#聚类#迁移学习
TA的专栏
  • 数学与统计学理论
    6篇
  • codewars专题
    10篇
  • MATLAB随笔
    15篇
  • R语言随笔
    19篇
  • 笔记
  • LaTeX随笔
  • Java随笔
    2篇
  • longo随笔
    1篇
  • python随笔
    18篇
  • 机器学习
    11篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

解决tensorflow_gpu-2.3.1 出现“Could not load dynamic library ‘cudart64_101.dll‘的问题

先上问题import tensorflow as tf2020-11-30 09:54:16.112235: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found2020-11-30 09:54:16.112420: I tensorflow/stream_
原创
150阅读
0评论
0点赞
发布博客于 2 月前

Python语言Codewars实战——Sudoku Solution Validator(4 kyu)

Description:Sudoku BackgroundSudoku is a game played on a 9x9 grid. The goal of the game is to fill all cells of the grid with digits from 1 to 9, so that each column, each row, and each of the nine 3x3 sub-grids (also known as blocks) contain all of the
原创
29阅读
0评论
0点赞
发布博客于 3 月前

Python实战——VAE的理论详解及Pytorch实现

2.1 设定优化目标这一部分引入是因为一个问题:在通过采样的方法(蒙特卡洛法)计算下面这个式子的时候可不可以走捷径(shortcut)?实际上(in practice),对大多数的潜变量zzz而言,P(X∣z)P(X|z)P(X∣z)都是nearly zero的,因此它们对我们估计P(X)P(X)P(X)是没啥用的。这里就涉及到了VAE的核心思想了:尽量只采样那些对生成XXX 有贡献的zzz,然后用它们估计P(X)P(X)P(X) 。那么问题来了,从哪个分布里面去采样才能达到这个目的呢?不妨假设
原创
288阅读
1评论
1点赞
发布博客于 3 月前

Error loading “D:\Coding\Anaconda\lib\site-packages\torch\lib\asmjit.dll“

OSError: [WinError 126] The specified module could not be found. Error loading "C:\Users\chunc\anaconda3\lib\site-packages\torch\lib\asmjit.dll" or one of its dependencies.这个问题简直坑人,我在CSDN等国内的博客网站找的解决办法都是更新numpy,可谁知numpy没更新好,我的Spyder倒是莫名其妙地卸了,弄的我只能重装Anaco
原创
1554阅读
5评论
3点赞
发布博客于 3 月前

MATLAB实战——微分方程组的解法之欧拉法与4阶龙格库塔法

实现:%%Question 1 part(b)clear all;clc;t0 = 0;x0 = 1/2;dt = 0.1;tf = 1;t_range = t0:dt:tf;x_EU = zeros(1,length(t_range));x_EU(1)= x0;x_RK = zeros(1,length(t_range));x_RK(1)= x0;for k = 1:length(t_range) - 1 x_EU(k+1) = euler_scheme(x_EU...
原创
435阅读
1评论
0点赞
发布博客于 3 月前

机器学习小知识——神经网络的L1和L2正则化

有时候在求解规划问题时,我们想要让得到的解满足一定的条件,换句话说,如果得到的解不能满足一定的条件我们更加倾向于拒绝它,而且这种倾向还是比较大的。这种情况在实际应用中比较常见,比如在准备出去旅行时,我们肯定不太希望背包里面放置特别重的东西,这时候就可以加一个条件,如果物品的重量大于一个给定的临界值,那么它的价值将大大降低,而这种大大降低可以通过给其添加一个很大的系数实现。同样的,在求解神经网络损失函数的最小值时,我们希望自变量权重向量www满足一定的条件,如果不满足,就给其狠狠地惩罚一下。这时候我们就会在
转载
33阅读
0评论
1点赞
发布博客于 3 月前

R语言Codewars实战——Sum by Factors(4kyu)

Description:Given an array of positive or negative integersI= [i1,..,in]you have to produce a sorted array P of the form[ [p, sum of all ij of I for which p is a prime factor (p positive) of ij] ...]P will be sorted by increasing order of the prime nu
原创
77阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Best travel(5kyu)

Description:John and Mary want to travel between a few towns A, B, C … Mary has on a sheet of paper a list of distances between these towns. ls = [50, 55, 57, 58, 60]. John is tired of driving and he says to Mary that he doesn’t want to drive more than t
原创
25阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Exponentials as fractions(4kyu)

Description:The aim is to calculate exponential(x) (written exp(x)in most math libraries) as an irreducible fraction, the numerator of this fraction having a given number of digits.We call this function expand, it takes two parameters, x of which we want
原创
29阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Fibo akin(5kyu)

Description:Be u(n) a sequence beginning with:u[1] = 1, u[2] = 1, u[3] = 2, u[4] = 3, u[5] = 3, u[6] = 4,u[7] = 5, u[8] = 5, u[9] = 6, u[10] = 6, u[11] = 6, u[12] = 8,u[13] = 8, u[14] = 8, u[15] = 10, u[16] = 9, u[17] = 10, u[18]
原创
37阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Twice linear(4kyu)

Consider a sequence u where u is defined as follows:The number u(0) = 1 is the first one in u.For each x in u, then y = 2 * x + 1 and z = 3 * x + 1 must be in u too.There are no other numbers in u.Ex: u = [1, 3, 4, 7, 9, 10, 13, 15, 19, 21, 22, 27, …]
原创
38阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Number of trailing zeros of N!(5kyu)

Description:Write a program that will calculate the number of trailing zeros in a factorial of a given number.N! = 1 * 2 * 3 * … * NBe careful 1000! has 2568 digits…For more info, see: http://mathworld.wolfram.com/Factorial.htmlExampleszeros(6) = 1#
原创
45阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Rainfall

说明:这道题是真难到我了,主要是我不清楚怎么把字母之间的数字匹配出来,我初始的时候想的是正则表达式,但是R语言的正则表达式与我在python中学到的不同,且更加麻烦复杂,再者我又对正则表达式一知半解的,脑子真就慢慢变得迷糊了,直接看了别人的解法(整半天经验没变化,难受啊)。Description:data and data1 are two strings with rainfall records of a few cities for months from January to December.
原创
69阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Last digit of a large number(5kyu)

Description:Define a function that takes in two non-negative integers a and b and returns the last decimal digit of a^b. Note that a and b may be very large!For example, the last decimal digit of 9^7 is 9, since 9^7 = 4782969. The last decimal digit of (
原创
124阅读
0评论
0点赞
发布博客于 6 月前

R语言Codewars实战——Help the bookseller !(6kyu)

Description:A bookseller has lots of books classified in 26 categories labeled A, B, ..., Z. Each book has a code c of 3, 4, 5 or more characters. The 1st character of a code is a capital letter which defines the book category.In the bookseller’s stockli
原创
59阅读
0评论
0点赞
发布博客于 6 月前

MATLAB与Python实战——二维向量与等高线的绘制

代码前部分是求解偏微分方程,后面一部分是绘图。在绘图的过程中,主要难点有两个:第一, 如何使用python或MATLAB绘制等高线以及热力图,并把它们叠加在一张图上。第二,如何使用python或MATLAB绘制二维的向量图。MATLAB实现代码:% Solution of 2D Stokes and continuity equations with finite differences% on a regular grid using stream function - vorticit
原创
179阅读
0评论
0点赞
发布博客于 6 月前

MATLAB实战——回归分析、回归诊断与异常值的查找

例1clear,clc%% 数据准备x1 = [7 1 11 11 7 11 3 1 2 21 1 11 10]';x2 = [26,29,56,31,52,55,71,31,54,47,40,66,68]';x3 = [6 15,8,8,6,9,17,22,18,4,23,9,8]';x4 = [60,52,20,47,33,22,6,44,22,26,34,12,12]';y = [78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9
原创
668阅读
1评论
1点赞
发布博客于 7 月前

MATLAB实战——方差分析

例1例2例3
原创
236阅读
0评论
1点赞
发布博客于 7 月前

MATLAB实战——图片噪声的添加与平滑处理

加入高斯白噪声并作平滑处理clear,clc%% (1) 读取数据A = imread('LenaRGB.jpg');%% (2)在数据中加入高斯白噪声作平滑处理% 加入高斯白噪声B = double(A)/255;[m,n,p] = size(B); % 大小white_noise = 0 + 0.1*randn(m,n); % 白噪声C = B + white_noise; % 加白噪声D = C*255; %将像素范围扩大至0--255D2 = uint8(D);
原创
217阅读
0评论
0点赞
发布博客于 7 月前

R语言实战——基于KNN聚类的时间序列分析预测

---title: "Summary of Reading"author: "ChenWei"date: "2020/6/24"output: word_document---```{r setup, include=FALSE}knitr::opts_chunk$set(echo = TRUE)    这一次我阅读的是Francisco Martinez等著的《Time Series Forecasting with KNN in R: the tsfknn Package》,这篇文章
原创
559阅读
0评论
0点赞
发布博客于 7 月前

Python实战——过采样数据的处理之改进的SMOTE算法

理论实现数据:2,4,4,2,3,3,02,2,3,2,1,2,12,3,3,2,2,3,12,2,3,2,5,2,12,3,4,3,2,2,01,5,4,2,2,1,02,5,4,4,4,1,02,4,4,4,4,7,01,4,2,2,2,4,02,3,3,2,5,2,01,2,2,2,1,3,02,5,4,2,5,2,01,5,3,4,4,2,12,6,2,2,4,1,02,4,4,3,4,2,02,2,4,3,5,3,01,6,3,3,4,7,01,4,4,
原创
916阅读
3评论
3点赞
发布博客于 7 月前

R语言实战——谱系聚类分析与动态聚类分析

一、理论二、实战分析x1 <- c(5,7,3,6,6)x2 <- c(7,1,2,5,6)X <- cbind(x1,x2)# 计算初始距离矩阵dist(X) # 默认计算欧式距离dist(X,diag=TRUE) # 显示对角线元素dist(X,diag=TRUE,upper = TRUE) # 显示对角线元素和上三角元素dist(X,method = 'manhattan')dist(X,method = 'minkowski',p=1)
原创
208阅读
0评论
0点赞
发布博客于 7 月前

MATLAB实战——手写个人签名提取与初步处理

现在很多工作都转移到了线上,有些情况下需要将签名插入word,但是我们有时候是没法打印后再签名的,因此我就写了这么个程序。一、读取图片%% 读取图片pic = imread('C:\Users\cw817615\Desktop\签名.jpg');threshold = graythresh(pic);%确定二值化阈值pic_bw = im2bw(pic,0.55);%对图像二值化,黑色的为0,白色的为1imshow(pic_bw) % 展示处理前的二值化图片pic_backup = p
原创
122阅读
0评论
0点赞
发布博客于 7 月前

灰狼算法优化svm以及求解多目标规划问题

里面包含了灰狼算法求解多目标规划的基本代码并,同时还有相关改进的代码与改进的参照论文,除此之外,还有用灰狼算法优化svm算法的代码
zip
发布资源于 9 月前

微分方程的数值解法与符号解法

文章目录数值解符号解数值解问题Matlab实现main.m 主函数clear,clcx0 = 0; % xminx1 = 1; % xmaxh = 0.1; % 步长y0 = 1/2; % y0为初始值% 欧拉法[xy{1}(:,1), xy{1}(:,2)] = forwardEuler(x0, y0, x1, h);% 改进欧拉法[xy{2}...
原创
401阅读
0评论
0点赞
发布博客于 10 月前

含指数函数的不定积分方法归纳

本文给出了含指数函数的不定积分的几种形式,并通过例子来归纳这些形式的积分技巧。
原创
2830阅读
0评论
0点赞
发布博客于 10 月前

形如e^(ax^2+bx+c)的积分公式的证明

形如∫ex2dx\int e^{x^2}dx∫ex2dx的积分是一种典型的很难积的函数,普通方法很难把它积出来,得用巧劲。以下为证明过程:直接求积分很难,我们先把它平方,将其转为二重积分:(∫ex2dx)2=∫ex2dx⋅∫ey2dy=∬ex2+y2dxdy(∗)\begin{aligned}\left(\int e^{x^2}dx \right)^2 &=\int e^{x^...
原创
1239阅读
0评论
0点赞
发布博客于 10 月前

R语言实战——百分条图与雷达图

文章转载自“医学统计与R语言”公众号,文章链接为:文章链接百分条图输入1library(ggplot2)library(ggthemes)library(ggsci)library(rio)percentbar <- import("percentbar.xlsx")percentbar输出1 year government society Indivi...
转载
566阅读
0评论
0点赞
发布博客于 10 月前

R语言实战——ROC曲线的绘制

前言:以前使用Matlab绘制ROC曲线常常是工具箱有就画,没有就不画,而且在想画的时候工具箱恰恰就没有,很纳闷。然后无意间发现了一篇用R语言绘制ROC曲线的文章,赶紧学了并分享出来,以备不时之需。先通过一个例子来讲解一下参数的作用,使用的数据是大名鼎鼎的Iris数据集,R语言自带。数据处理第一步当然得处理一下数据。默认的Iris数据集有三类鸢尾花,我目前的理解是只有二分类才画的出ROC曲...
原创
2150阅读
0评论
6点赞
发布博客于 10 月前

最优C-G参数选取的SVM的Matlab实现(含数据与工具包及使用说明)

本资源包含Matlab的libsvm工具包,两个支持向量机实例(含数据),最优C-G参数的选取函数及图像绘制
zip
发布资源于 10 月前

离散型随机变量的分布函数的绘制

前言:绘制连续型的分布函数很容易,直接根据分布函数计算函数值即可。但是对于离散型随机变量而言,没有已知的分布函数,只能使用经验分布函数或者说是累积分布函数进行近似。下文以离散分布中比较经典的二项分布、泊松分布以及几何分布为例绘制它们的经验分布函数。二项分布二项分布的理论部分可以参照二项分布百度百科Len = 100000; %% 二项分布Bin(n,p)N = 50; % 二项分...
原创
1184阅读
0评论
0点赞
发布博客于 10 月前

GM(1,1)灰色预测及相关检验指标的MATLAB实现

本篇文章的代码实现了以下三大方面的功能:一、计算级比和光滑比并做级比检验;二、序列的灰色预测;三、精度检验,主要做了以下内容:①相对残差Q检验(MAPE);②关联度检验;③方差比C检验;④小误差概率P检验1 灰色预测模型本部分内容参照了王佳佳的硕士学位论文《京津冀地区高速铁路对区域经济影响研究》,我觉得这篇论文讲灰色预测讲得蛮详细的,如果想学灰色预测的可以看看。2...
原创
1534阅读
0评论
4点赞
发布博客于 10 月前

形如1/(a+bsinx)的积分公式的证明

需要求解的积分具有如下形式:∫1a+bsin⁡xdx\int \frac{1}{a+b \sin x} d x∫a+bsinx1​dx这种积分比较常见,可以考虑记一下它的结果,结果为:∫1a+bsin⁡xdx=2a2−b2⋅arctan⁡⋅{atan⁡(x2)+ba2−b2}\int \frac{1}{a+b \sin x} d x=\frac{2}{\sqrt{a^{2}-b^{2}}} ...
原创
610阅读
0评论
1点赞
发布博客于 10 月前

R语言学习——对整合和重构的理解

文章目录1 整合数据2 reshape2包2.1 融合2.2 重铸前言:R中提供了许多用来整合(aggregate)和重塑(reshape)数据的强大方法。在整合数据时,往往将多组观测替换为根据这些观测计算的描述性统计量。在重塑数据时,则会通过修改数据的结构(行和列)来决定数据的组织方式。本篇文章描述了用来完成这些任务的多种方式。1 整合数据在R中使用一个或多个by变量和一个预先定义好的...
原创
189阅读
1评论
0点赞
发布博客于 10 月前

R语言实战——主成分分析理论推导与R语言实现

目录1 总体主成分1.1 主成分的定义与导出1.2 主成分的性质1.3 从相关矩阵出发求主成分2 样本主成分2.1 从S出发求主成分2.2 从R出发求主成分3 相关的R函数以及实例3.1 `princomp`函数3.2 `summary`函数3.3 `loadings`函数3.4 `predict`函数3.5 `screeplot`函数3.6 `biplot`函数4 实例附录——PCA高级散点图的...
原创
441阅读
0评论
1点赞
发布博客于 10 月前

单总体与多总体ANOVA方差分析.zip

里面包含有单因素ANOVA与多因素ANOVA方差分析的详细理论推导以及相关具体实例,基本上只需要看这一份资料就可以把ANOVA看懂了,同时里面还有SPSS的实现结果分析
zip
发布资源于 10 月前

R语言实战——距离判别、贝叶斯判别、Fisher判别理论详细推导与R语言实现

前言判别分析是用以判别个体所属群体的一种统计方法,它产生于20世纪30年代,近年来,在许多现代自然科学的各个分支和技术部门中,得到广泛的应用.例如,利用计算机对一个人是否有心脏病进行诊断时,可以取一批没有心脏病的人,测其p个指标的数据,然后再取一批已知患有心胜病的人,同样也测得p个相同指标的数据,利用这些数据建一个判别函数,并求出相应的临界值,这时对于需要进行诊断的人,也同样测其p个指标的数据...
原创
3838阅读
4评论
9点赞
发布博客于 10 月前

旅行-爬虫 数据分析源码.zip

旅游攻略选择
zip
发布资源于 11 月前

Python实战——选择最佳旅游攻略,让旅游更加便捷(爬虫实战)

前言: 打算和老弟去西安来一个说走就走的旅行,但是网上攻略太多了看得头皮发麻,但是仔细看的话每条旅游攻略都有特定的参数条件的,比如人数、价钱、游玩时间,也就是说我们可以通过筛选这些条件初步获取我们满意的攻略。1 前期准备这次爬的是去哪儿网,网站大概长这样如果我们搜一个旅行地点,会得到这么一个网页网页的网址为:http://travel.qunar.com/travelbook/list...
原创
529阅读
0评论
3点赞
发布博客于 11 月前

Python实战——表情包爬虫,让你拥有数之不尽的表情包(^_^)

前言: 每次发表情包的时候总是会愁自己表情包太少了,用来用去就那些,很头疼,现在写一个爬虫爬取表情包,以后再也不用愁没表情包了!爬取的网站网址为:表情包网址先来看看网站长啥样看到这么多表情包就很开心,一个一个保存太麻烦了,爬就完事了!源代码:# _*_ coding: utf-8 _*_'''Author:Chen Weidate: 23:12Repetition i...
原创
110阅读
0评论
0点赞
发布博客于 11 月前

九型人格心理测试工具 等1个文件.zip

一款人格测试软件
zip
发布资源于 11 月前

R语言学习——一元与多元正态分布检验(也可以用于其他分布的检验)

生成随机数:# 生成随机数set.seed(1230) # 随机数种子y1 <- rnorm(100); # 标准正态分布N(0,1)y2 <- rexp(100,2); # 参数为2的指数分布Exp(2)y3 <- rt(100,1); # 自由度为1的t分布t(1)y4 <- -y2; # -Exp(2)1 图像法1.1 直方图...
原创
1127阅读
0评论
3点赞
发布博客于 1 年前

瑞利分布,对数正态分布,韦布尔分布,K分布参数极大似然估计的MATLAB实现

前言: 找到的第一篇文献,里面的密度函数出现了明显问题,在CSDN里面找也经常是只找到一个或者两个分布的估计,但是有时候得四个分布一起用,找来找去难免会有些麻烦,找到一篇文献:邓泽怀的硕士学位论文《基于实测数据的海杂波统计建模》,里面详细地讲解了上面提到的四种分布参数的矩估计、极大似然估计,并作了拟合优度检验。实践证明这里面讲到的关于参数估计的内容非常准确。文章目录1 背景知识2 典型分布模型2...
原创
2815阅读
0评论
4点赞
发布博客于 1 年前

MATLAB求解非线性0-1整数规划(基于Yalmip工具箱)

前言: 折腾了老半天,直接在CSDN里面搜找不到代码,百度刚开始也就找到一个bnb20工具箱,可那已经是2009年的玩意了。不过还是很幸运,在我绝望到想用遗传算法求解的时候,终于找到了一个叫Yalmip的工具箱,讲道理,功能强大且好用。1 Yalmip工具箱的下载与安装Yalmip的下载(建议在我给的这个链接里下载,官网下载的速度实在是emmmm)Yalmip的安装2 Yalmip的使用...
原创
1547阅读
0评论
3点赞
发布博客于 1 年前

基于Box-Cox变换的改进ARMA模型的MATLAB实现

前言: 第一次听说Box-Cox变换,发现原来这玩意这么厉害,值得写一写记录一下。以下内容参考了栗然等人写的论文《基于Box-Cox变换的风电场短期风速预测模型》1 问题背景风力发电是解决当前突出的能源和环境问题的有效手段,因而得到了普遍重视和大规模开发利用,是目前世界上增长速度最快的能源开发形式。尤其近十几年来其发电成本大幅下降,已具备与传统常规电源竞争的潜力。目前,国内外对于风力发电的...
原创
593阅读
0评论
1点赞
发布博客于 1 年前

R语言学习——多元数据统计特征的分析(含马氏距离的计算及矩阵分解)

**前言:**将多元统计分析课程上学到的知识以编程的形式展现。本篇博客使用到的数据如下:"Wind" "Solar radiation" "CO" "NO" "NO2" "O3" "HC"8 98 7 2 12 8 27 107 4 3 9 5 37 103 4 3 5 6 310 88 5 2 8 15 46 91 4 2 8 10 38 90 5 2 12 12 49 8...
原创
850阅读
0评论
1点赞
发布博客于 1 年前

一阶时滞微分方程三种求解方法的MATLAB实现及稳定性分析

**前言:**大学期间只学习过《常微分方程》,没想到有些学校竟然还学《时滞微分方程》,于是找到一本由内藤敏机(日本)等著,马万彪等译的《时滞微分方程——泛函数微分方程引论》(有需要的可以私聊,CSDN貌似上传不了书籍,说侵权emmm),看着头秃,不过受到不少启发,尤其是对Logistic方程的改进,真真是长见识了。没找到有人用欧拉法解一阶时滞微分方程的,于是一不做二不休便用MATLAB实现了一下下...
原创
602阅读
0评论
0点赞
发布博客于 1 年前

基于遗传算法的多种运输工具或带时间窗的路径优化问题(VRP)的求解(MATLAB)

文章目录1.背景2. 单种运输工具带时间窗2.1 带时间窗车辆路径问题的描述2.2 遗传算法的求解2.2.1 编码方案的设计2.2.2 种群初始化2.2.3 约束处理与适应度函数2.2.4 选择算子2.2.5 交叉算子2.2.6 变异算子2.2.7 其他部分2.3 粒子群算法的求解3. 多种运输工具不带时间窗3.1 立体交通介绍3.2 遗传算法求解3.2.1 染色体编码设计3.2.2 适应度函数3...
原创
2387阅读
10评论
14点赞
发布博客于 1 年前

Python实战——百度图片的爬取

有人找我爬取一下百度图片,好像写这个的人比较少,于是我借鉴GitHub上的代码,根据需求修改后有如下代码# -*- coding: utf-8 -*-import requestsfrom threading import Threadimport reimport timeimport hashlibimport osclass BaiDu: """ 爬取百度...
原创
34阅读
0评论
0点赞
发布博客于 1 年前

统计学——依据概率密度生成随机数并计算分位数(以一元p-范分布及其抽样分布为例)

前言: 最近在依据概率密度生成随机数方面遇到不少麻烦,找遍了CSDN,大多是生成常见分布的随机数,很少有讲生成任意给定概率密度的随机数,即便有部分人写了,但都没给出比较好的模板。有心人天不负,在一番摸索之后,终于是写出来了,顺便还把分位数的两种解法给写出来了,以下是需要解决的问题与相关代码。1. 背景知识1.1 一元p-范分布  在研究线性回归模型(y=βx+ε)(y=\beta x+\va...
原创
305阅读
0评论
0点赞
发布博客于 1 年前

Python实现词云图两例

以下两个实战使用python3.7实现,编译软件为Jupyter Notebook实战1:App Store钉钉评价分析评论爬取App Store 已经给出一个软件评论接口import requestsimport pandas as pdfrom pandas import DataFrameflag = [1,2,3,4,5,6,7,8,9]urllist = []for ...
原创
236阅读
0评论
1点赞
发布博客于 1 年前

基于Python的两例词云实战代码与数据.zip

两个python词云实战案例的代码与数据,编译软件为Jupyter Notebook,里面详细地描述了数据的爬取、词云的构造方法等一系列的问题,由简入繁,通俗
zip
发布资源于 1 年前

R语言学习——最全R语言向量的生成与命名

首先需要说明的是,在R语言中向量和列表是不一样的,向量中每一个元素的类型都是一样的,而列表反之,这里的列表与Python中的列表有几分相似。以下是分类情况:同样类型的数据不同类型的数据一维向量(vector)列表(lists)R语言中生成常用向量主要有这么几个方法:方法1:...
原创
2746阅读
0评论
1点赞
发布博客于 1 年前
Python数据分析之电影《哪吒》用户情感分析
发布Blink于 1 年前

B站评论(含折叠的)与弹幕爬取

本次设计的爬虫只需要输入av号,便可爬取所有的评论(包括折叠的)以及所有实时弹幕。注:1、av号的获取如图:2、爬取的评论是按照时间排序的,置顶评论并不会放在第一个3、最终结果是以两个csv文件展示出来的,分别称为“评论数据.csv”、“弹幕数据.csv”以下便是代码了,有两个类,一个PingLun——爬取评论,一个DanMu——爬取弹幕,两个类的初始化都只要有av号即可。# -*...
原创
651阅读
0评论
1点赞
发布博客于 1 年前
#让我们用python跑回归#Fama-French三因素模型(一)
发布Blink于 1 年前
Python金融系列第五篇:多元线性回归和残差分析
发布Blink于 1 年前
6.复杂网络实验六:SIR病毒传播模型(matlab)
发布Blink于 1 年前

python爬虫与数据分析之《向往的生活爬取》

项目一:《向往的生活》弹幕爬取与分析项目一参照于公众号“超哥的杂货铺”《《向往的生活3》弹幕爬取与分析》一文链接:公众号文章链接.本文在参考文章的基础上添加了一些自己的理解,多了不少注释1.1弹幕的爬取注:本次代码主要使用requests库,抓取结果存储在CSV文件中1.1.1 网页分析在芒果TV网页版打开第5期节目,等待广告加载完毕,同时打开chrome开发者工具的network选...
转载
309阅读
1评论
1点赞
发布博客于 2 年前

机器学习——神经网络篇

一、生物神经元简介1.1生物神经元的结构参考资料:https://mp.weixin.qq.com/s?__biz=MzA4MTg3NDgwNQ==&mid=2247486270&idx=1&sn=12e35b20ad8464d051062a4e40810ae0&chksm=9f8f1124a8f898323cc0335c012c1ba020c9c1da972...
转载
185阅读
0评论
1点赞
发布博客于 2 年前

Python面向对象程序设计总结

一、总结图1 Python类主要内容思维导图二、补充说明1、类只负责刻画,不负责执行类是显示生活的一种刻画,是一种将现实抽象之后形成的模板,以构造对象的方式具体去实现类的模板2、构造函数__init__只能返回NoneType类型的内容,否则会报错3、我们以点运算符调用对象的变量的时候,系统会先检查对象是否有该名称的变量,如若没有则检查该对象所属类是否有该变量,再没有则检查该类...
原创
1284阅读
0评论
3点赞
发布博客于 2 年前

python正则表达式图文总结(二)

推荐参考资料:http://www.runoob.com/python/python-reg-expressions.html详细的总结内容请见我的图文总结(一)文章这篇文章给出一个实例# 导入正则表达式的re模块import re# 取出string8中所有的天气状态string8 = "{ymd:'2018-01-01',tianqi:'晴',aqiInfo:'轻度污染'},"...
原创
68阅读
0评论
1点赞
发布博客于 2 年前

JSON与python

一、什么是JSON?全称:JavaScript Object Notation, 即JavaScripe对象标记本质:JSON是一种轻量级的数据交换格式,它是我们为了便于跨语言交换数据而定制的一种数据格式表现形式:字符串,符合JSON格式的字符串叫做JSON字符串二、JSON的优势易于阅读易于解析网络传输效率高跨语言交换数据三、在python中使用JSON(反序列化)注意...
原创
75阅读
0评论
1点赞
发布博客于 2 年前

python正则表达式图文总结(一)

一、主要正则表达式图1 正则表达式主要内容总结二、正则类型1、查找①表达式:re.findall(pattern, string, flags)其中pattern为正则表达式,string为待查找字符串,flags为图一中所述的模式②查找结果以列表的形式返回2、替换①表达式:re.sub(pattern, repl, string, count, flags)其中patter...
原创
259阅读
0评论
1点赞
发布博客于 2 年前

Python包、模块易错点

1、python项目的组织架构示意图python程序结构:包―>模块―>类―>变量和函数(这两个为类的属性,不属于Python结构),就好比学生的身高与体重不属于学校的组织架构一样,它们只是学生所特有的属性2、在Python里面包就是文件夹,但文件夹不一定是包,包是含有__init__.py模块的文件夹3、Python中的import都是导入模块,导入包其实就是导入模块的...
原创
91阅读
0评论
1点赞
发布博客于 2 年前

python数据类型总结

参考资料:https://blog.csdn.net/answer3lin/article/details/86430074一、python中数据类型分类思维导图二、值得注意的是:1、Python中的变量都是指针,因此是没有类型限制的,且指针的内存空间大小是与类型无关的,其内存空间只是保存了所指向数据的内存地址。2、值类型是不可变的(immutable),这种不可变是指该值类型的变量指向...
原创
5772阅读
0评论
15点赞
发布博客于 2 年前

lingo中@size@for@sum函数的使用

@size:LINGO中的@size()函数用于确定集合中元素的个数。比如你的集合是注意:在使用size的时候直接在@size()括号里写上集合名就行,不需要写@size(s1(i))中的(i)s1/a b c d f g /:x;当调用m=@size(s1)时,它返回的一个数值6,因为s里面有6个元素。@for:该函数用来表示线性规划中的约束条件sets:r/1..8/:d;...
原创
9668阅读
3评论
13点赞
发布博客于 2 年前

对Java中聚合与耦合的理解

在程序设计时,为了避免程序的冗杂,减少各个类之间的依耐性,经常使用低耦合和高内聚的设计理念。为了达到这个目的,我们采取以下措施:①降低耦合:我们常用封装来降低耦合。例如,假如现在又A、B两个类,为降低它们的耦合度,我们将A中直接调用B中成员变量的部分尽量改为以调用B中方法的方式调用变量,不要让B对A“掏心掏肺”,要让B懂得有所保留,此为封装。这样的好处是保护了B变量的隐私性。②提高聚合:我们...
原创
462阅读
0评论
2点赞
发布博客于 2 年前

关于向上造型的一点理解

@Java随笔[Java随笔]关于向上造型的一点理解通过CSDN博客:Java 向上造型详解学到了以下知识点地址:1:https://blog.csdn.net/wangaiji/article/details/825558942:https://blog.csdn.net/shf4715/article/details/468480831.由子类对象转化为父类对象称为向上造型,我的理解...
原创
1270阅读
0评论
4点赞
发布博客于 2 年前