层次分析法在实际应用中的主要缺点是专家的判断矩阵难以填写,原因如下:
实际比赛中的题目所要解决的问题可能是我们比较陌生的领域,或者说需要大量数据支撑才能判断填写
比较对象有多个时填起来繁琐麻烦
这是基于“专家”主观判断的层次分析法的缺点
而topsis的缺点是太过于客观,缺少主观因素的考虑
我们最简单的优化思路是加权即y=xv1+(1-x)v2
其中v1是层次分析法得出的权重向量而v2是topsis得出的权重向量,y为优化后的权重向量
更深一步的优化思路是建立基于最优传递矩阵的topsis模型
模型解释:该模型是优化的层次分析法和topsis法的结合。针对传统层次分析法中存在的专家难以把握评判尺度,一致性检验难以通过的问题,提出3标度法,建立专家判断矩阵,将专家判断矩阵转化为最优传递矩阵,最终转化为最优一致性矩阵,得到相对重要度。再与Topsis法相结合,从主客观两个角度辩证统一分析数据。
这种改进的Topsis法有以下优点:
(1)利用3标度法建立判断矩阵,相对传统的1~9标度法更容易实现,作为专家就能够很好地给出两个对象的重要性程度之比。
(2)改进的 AHP 与传统的层次分析法在结果上是一致的,简化了计算流程,方法更加有效。
计算过程:
1.根据文献(还是那个)计算出相对重要度W,作为topsis中的权重参与后续计算。

2.原始矩阵X
其中n为评价对象,m为评价指标个数