程序设计方法学
8.1 实例13:体育竞技分析
8.1.1"体育竞技分析"问题分析——高手过招,胜负只在毫厘之间
- 需求:毫厘是多少?如何科学分析体育竞技比赛?
- 输入:球员的水平
- 输出:可预测的比赛成绩
体育竞技分析:模拟N场比赛
- 计算思维:抽象 + 自动化
- 模拟:抽象比赛过程 + 自动化执行N场比赛
- 当N越大时,比赛结果分析越科学
比赛规则
- 双人击球比赛:A&B,回合制,5局3胜
- 开始时一方先发球。直至判分,接下来胜者发球
- 球员只能在发球局得分,15分胜一局
8.1.2自顶向下和自底向上
自顶向下——解决复杂问题的有效方法
-
将一个总问题表达为若干个小问题组成的形式
-
使用同样方法进一步分解小问题
-
直至,小问题可以用计算机简单明了的解决
自底向上(执行)——逐步组建复杂系统的有效测试方法
-
分单元测试,逐步组装
-
按照自顶向下相反的路径操作
-
直至,系统各部分以组装的思路都经过测试和验证
8.1.3“体育竞技分析”实例讲解
程序总体框架及步骤
-
步骤1:打印程序的介绍性信息 -printInfo()
-
步骤2:获得程序运行参数:proA, proB, n -getInputs()
-
步骤3︰利用球员A和B的能力值,模拟n局比赛 - simBGames()
-
步骤4:输出球员A和B获胜比赛的场次及概率 -printSummary()
def main():
printIntro()
probA,probB, n = getInputs()
winsA, winsB = simNGames(n,probA,probB)
printSummary(winsA,winsB)
def printIntro():
print("这个程序模拟两个选手A和B的某种竞技比赛")
print("程序运行需要A和B的能力值(以0到1之间的小数表示)")
def getInputs():
a = eval(input("请输入选手A的能力值(0-1):"))
b = eval(input("请输入选手B的能力值(0-1):"))
n = eval(input("模拟比赛的场次:"))
return a,b,n
def printSummary(winsA,winsB):
n = winsA + winsB
print("竞技分析开始,共模拟{}场比赛.format(n)")
print("选手A获胜{}场比赛,占比{:0.1%}".format(winsA,winsA/n))
print("选手B获胜{}场比赛,占比{:0.1%}".format(winsB,winsB/n))
模拟N局比赛
def simNGames(n,probA,probB):
winsA,winsB = 0,0
for i in range(n):
scoreA,scoreB = simOneGame(probA,probB)
if scoreA > scoreB:
winsA += 1
else:
winsB += 1
return winsA,winsB
根据分数判断局的结束
def simOneGame(probA,probB):
scoreA,scoreB = 0,0
serving = "A"
while not gameOver (scoreA,scoreB):
if serving == "A":
if random() < probA:
scoreA += 1
else:
serving="B"
else:
if random() < probB:
scoreB = 1
else:
serving="A"
return scoreA,scoreB
def gameOver(a,b):
return a==15 or b==15
#MatchAnalysis.py
from random import random
def printIntro():
print("这个程序模拟两个选手A和B的某种竞技比赛")
print("程序运行需要A和B的能力值(以0到1之间的小数表示)")
def getInputs():
a = eval(input("请输入选手A的能力值(0-1): "))
b = eval(input("请输入选手B的能力值(0-1): "))
n = eval(input("模拟比赛的场次: "))
return a, b, n
def simNGames(n, probA, probB):
winsA, winsB = 0, 0
for i in range(n):
scoreA, scoreB = simOneGame(probA, probB)
if scoreA > scoreB:
winsA += 1
else:
winsB += 1
return winsA, winsB
def gameOver(a,b):
return a==15 or b==15
def simOneGame(probA, probB):
scoreA, scoreB = 0, 0
serving = "A"
while not gameOver(scoreA, scoreB):
if serving == "A":
if random() < probA:
scoreA += 1
else:
serving="B"
else:
if random() < probB:
scoreB += 1
else:
serving="A"
return scoreA, scoreB
def printSummary(winsA, winsB):
n = winsA + winsB
print("竞技分析开始,共模拟{}场比赛".format(n))
print("选手A获胜{}场比赛,占比{:0.1%}".format(winsA, winsA/n))
print("选手B获胜{}场比赛,占比{:0.1%}".format(winsB, winsB/n))
def main():
printIntro()
probA, probB, n = getInputs()
winsA, winsB = simNGames(n, probA, probB)
printSummary(winsA, winsB)
main()
8.2 Python程序设计思维
8.2.1计算思维与程序设计
计算思维——第3种人类思维特征
-
逻辑思维:推理和演绎,数学为代表,A->BB->CA->C
-
实证思维:实验和验证,物理为代表,引力波<-实验
-
计算思维:设计和构造,计算机为代表,汉诺塔递归
抽象和自动化
-
计算思维:Computational Thinking
-
抽象问题的计算过程,利用计算机自动化求解
-
计算思维是基于计算机的思维方式
抽象问题的计算过程,利用计算机自动化求解
-
计算思维基于计算机强大的算力及海量数据
-
抽象计算过程,关注设计和构造,而非因果
-
以计算机程序设计为实现的主要手段
编程是将计算思维变成现实的手段
8.2.2用户体验与软件产品
用户体验
实现功能 -> 关注体验
-
用户体验指用户对产品建立的主观感受和认识
-
关心功能实现,更要关心用户体验,才能做出好产品
-
编程只是手段,不是目的,程序最终为人类服务
提高用户体验的方法
方法1:进度展示
-
如果程序需要计算时间,可能产生等待,请增加进度展示
-
如果程序有若干步骤,需要提示用户,请增加进度展示
-
如果程序可能存在大量次数的循环,请增加进度展示
方法2:异常处理
-
当获得用户输入,对合规性需要检查,需要异常处理
-
当读写文件时,对结果进行判断,需要异常处理
-
当进行输入输出时,对运算结果进行判断,需要异常处理
其他类方法
-
打印输出:特定位置,输出程序运行的过程信息
-
日志文件:对程序异常及用户使用进行定期记录
-
帮助信息:给用户多种方式提供帮助信息
软件程序->软件产品 用户体验是程序到产品的关键环节
8.2.3基本的程序设计模式
从IPO开始.….
-
l: Input输入,程序的输入
-
P: Process处理,程序的主要逻辑
-
O: Output输出,程序的输出
-
确定IPO:明确计算部分及功能边界
-
编写程序:将计算求解的设计变成现实
-
调试程序:确保程序按照正确逻辑能够正确运行
自顶向下设计
模块化设计
-
通过函数或对象封装将程序划分为模块及模块间的表达
-
具体包括:主程序、子程序和子程序间关系
-
分而治之:一种分而治之、分层抽象、体系化的设计思想
-
紧耦合:两个部分之间交流很多,无法独立存在
-
松耦合:两个部分之间交流较少,可以独立存在
-
模块内部紧耦合、模块之间松耦合
配置化设计
-
引擎+配置:程序执行和配置分离,将可选参数配置化
-
将程序开发变成配置文件编写,扩展功能而不修改程序
-
关键在于接口设计,清晰明了、灵活可扩展
应用开发的四个步骤
从应用需求到软件产品:1.产品定义 2.系统架构 3.设计与实现 4.用户体验
- 1 产品定义:对应用需求充分理解和明确定义
产品定义,而不仅是功能定义,要考虑商业模式 - 2 系统架构:以系统方式思考产品的技术实现
系统架构,关注数据流、模块化、体系架构 - 3 设计与实现:结合架构完成关键设计及系统实现
结合可扩展性、灵活性等进行设计优化
- 4 用户体验:从用户角度思考应用效果
用户至上,体验优先,以用户为中心
8.3 Python第三方库安装
8.3.1看见更大的Python世界
13万个第三方库 https://pypi.org/
PyPl
- PyPl: Python Package Index
- PSF维护的展示全球Python计算生态的主站
- 学会检索并利用PyPI,找到合适的第三方库开发程序
实例:开发与区块链相关的程序
-
第1步:在pypi.org搜索blockchain
-
第2步:挑选适合开发目标的第三方库作为基础
-
第3步:完成自己需要的功能
安装Python第三方库——三种方法
-
方法1(主要方法):使用pip命令
-
方法2:集成安装方法
-
方法3:文件安装方法
8.3.2第三方库pip安装方法
pip安装方法——使用pip安装工具(命令行执行)
常用的pip命令——D: \ >pip install < 第三方库名 >
- 安装指定的第三方库
D: \ >pip install -U < 第三方库名 >
- 使用-U标签更新已安装的指定第三方库
D: \ >pip uninstall < 第三方库名 >
- 卸载指定的第三方库
D: \ >pip download < 第三方库名 >
- 下载但不安装指定的第三方库
D: \ >pip show < 第三方库名 >
- 列出某个指定第三方库的详细信息
D: \ >pip search < 关键词 >
- 根据关键词在名称和介绍中搜索第三方库
**D: \ >pip list **
- 列出当前系统已经安装的第三方库
主要方法,适合99%以上情况
-
适合Windows、Mac和Linux等操作系统
-
未来获取第三方库的方式,目前的主要方式
-
适合99%以上情况,需要联网安装
8.3.3第三方库的集成安装
集成安装:结合特定Python开发工具的批量安装
Anaconda——https://www.continuum.io
- 支持近800个第三方库
- 包含多个主流工具
- 适合数据计算领域开发
8.3.4第三方库的文件安装方法
为什么有些第三方库用pip可以下载,但无法安装?
-
某些第三方库pip下载后,需要编译再安装
-
如果操作系统没有编译环境,则能下载但不能安装
文件安装方法:http://www.lfd.uci.edu/~gohlke/pythonlibs/
文件安装方法——实例:安装wordcloud库
- 步骤1:在UCI页面上搜索wordcloud
- 步骤2:下载对应版本的文件
- 步骤3:使用pip install < 文件名 >安装
8.4 模块4:os库的基本使用
8.4.1os库基本介绍
os库提供通用的、基本的操作系统交互功能
- os库是Python标准库,包含几百个函数
- 常用路径操作、进程管理、环境参数几类
- 路径操作:os.path子库,处理文件路径及信息
- 进程管理:启动系统中其他程序
- 环境参数:获得系统软硬件信息等环境参数
8.4.2os库之路径操作
路径操作
os.path子库以path为入口,用于操作和处理文件路径
import os.path或import os.path as op
8.4.3os库之进程管理
os.system(command)
- 执行程序或命令command
- 在Windows系统中,返回值为cmd的调用返回信息
8.4.4os库之环境参数
获取或改变系统环境信息
8.5 实例14:第三方库自动安装脚本
8.5.1“第三方库自动安装脚本”问题分析
问题分析——第三方库自动安装脚本
-
需求:批量安装第三方库需要人工干预,能否自动安装?
-
自动执行pip逐━根据安装需求安装
如何自动执行一个程序?例如: pip?
8.5.2“第三方库自动安装脚本”实例讲解
#BatchInstall.py
import os
libs = {"numpy","matplotlib","pillow","sklearn","requests",\
"jieba","beautifulsoup4","wheel","networkx","sympy",\
"pyinstaller","django","flask","werobot","pyqt5",\
"pandas","pyopengl","pypdf2","docopt","pygame"}
try:
for lib in libs:
os.system("pip3 install "+lib)
print("Successful")
except:
print("Failed Somehow")
个人学习记录会持续更新,不喜勿碰,如有指导建议,欢迎评论区留言,谢谢!!!