在当今科技飞速发展的时代,数字化技术正逐步渗透到企业运营的各个环境,数字技术应用也由数据链接,逐步演变到知识链接的时代。知识链接的时代试图构建一个以数据驱动、知识互联的万维网。在知识获取、在线问答、智能搜索等领域,知识图谱技术也被广泛地应用。
在资产密集型企业,大型设备发生故障的复杂性、多样性,使得故障的精确诊断需要耗费大量的时间和物力,因此借助于数字化技术,构建知识库能力,能有效地辅助资产运维工作,并且基于故障表现形式,挖掘出深层次的关联关系,从新的视角去探索资产故障的形成原因,揭示故障发生的内在本质。
总体设计:
当资产出现异常时,用户可快速查询资产的关联信息(资产履历、故障体系、标准工作包、模型算法、知识图谱等),系统可以根据知识库来进行故障诊断和排除,如果知识库没有优选方案,可支持从网络上爬取相关设备故障和维修解决方式,并对知识库进行补充和优化。
应用场景:
1.知识文档管理
为每种资产类型建立知识库,包括管理文件库、行业标准库、故障处理知识库、维修保养知识库、最佳实践、经验案例等。可以按照资产类型、知识主题进行分类。支持对用户上传的文档进行审核,确保知识库内容质量,审核通过后,文档自动发布到知识库。
2.内容推荐与通知
根据用户的部门和岗位,以及浏览和检索历史,智能推荐相关的文档和知识,提供知识库更新、新文档上传的通知提醒功能,支持移动端检索、查阅和使用,方便及时了解最新知识动态。
3.知识图谱应用
借助知识图谱的技术,灵活展现企业故障体系,同时识别故障分类体系的内在逻辑,对故障情况进行深入挖掘和分析,帮助用户更好地理解和掌握资产故障状况,为资产运维人员提供有价值的方法和建议。
4.基于AI技术的故障诊断
作为智能运维的核心驱动力,设备模型、算法、数据缺一不可。在故障诊断过程中,系统自动将新发现的异常与历史数据进行比对,从而对故障原因进行智能自动判断。
同时,系统支持故障体系沉淀,将作业过程中积累的故障体系进行沉淀,建立宝贵的设备检维修知识库和设备故障知识共享体系。
5.机器人在线问答
移动端结合现场需求,实现了机器人在线问答的应用,例如:在故障上报的过程中,运维人员通过语音与机器人的交流。