DAY 15 逻辑卷划分

硬盘分区优点

优化读写性能

实现磁盘空间配额限制

提高修复速度

隔离系统和程序

安装多个os

采用不同文件系统

缺点

只能使用一块硬盘的空间

如果分区必须是连续的空间

一旦分区不能改变大小,如要改变只能删除分区

lvm 逻辑卷可以解决这些缺点

逻辑卷

lvm=logical volume manager 逻辑卷管理

将硬盘或分区 逻辑拆分成最小单元PE ,然后组成逻辑卷

作用:动态调整磁盘容量,提高磁盘灵活性

一定要有物理磁盘:物理卷(分区 可以是一块硬盘)

将多个物理卷组合成 ,卷组容量从多个物理卷中提取

创建过程 格式为8e :linux lvm

第一步建立物理卷 pvcreate /dev/sdb1 /dev/sdc 设备名

第二步建立卷组 vgcreate vg0 /dev/sdb1 /dev/sdc

第三部创建逻辑卷 lvcreate -L 15G -n cxk vg0

第四步 格式化 mkfs.xfs /dev/vg0/cxk

第五步 挂载 mount /dev/vg0/cxk /mnt

扩容

lvextend -L +10G /dev/cxk/lanqiu -r

xfs_growfs /dev/cxk/lanqiu 刷新

缩容 (lvreduce)

1.解挂载

2.检查文件系统完整性

3.缩减文件系统

4.缩减逻辑卷上下一致

5.再挂载回去

配额管理

1、检查是否已安装 xfsprogs 和 xfsquota 软件包

rpm -q xfsprogs quota (检查是否已经安装)

yum install -y xfsprogs quota (没有安装的话使用该命令安装)

[root@localhost ~]# mount -o remount usrquota,grpquota /dev/sdb1 /mnt2、以支持配额功能的方式挂载文件系统vim /etc/fstab,永久挂载

/dev/cxk/ky27 /opt/data xfs defaults,usrquota,grpquota 0 0

3、关闭安全功能:setenforce 0 ---关闭安全机制

4、创建用户:[root@192 /]# useradd zhangsan[root@192 /]# passwd zhangsan

5、创建好新用户之后,使用下面的命令来编辑用户的配额限制.其中的“-x”:表示启动专家模式,在当前模式下允许对配额系统进行修改的所有管理命令可用. “-c”:表示直接调用管理命令。“-u”:指定用户账号对象。“bsoft”:设置磁盘容量的软限制数值为80M.“bhard”:设置磁盘容量的硬限制数值为100M.“isoft”:设置磁盘文件数的软限制数值为40个.“ihard”:设置磁盘文件数的硬限制数值为50个.限制磁盘:xfs_quota -x -c 'limit -u bsoft=80M bhard=100M xiaozhan' /opt/wangyibo限制文件数:xfs_quota -x -c 'limit -u isoft=40 ihard=50 xiaozhan' /opt/wangyibo

也可以写在一块:[zhangsan@192 data1]$ xfs_quota -x -c 'limit -u bsoft=80M bhard=100M isoft=40 ihard=50 zhangsan' /opt/wangyibo 满足二选一,磁盘限制满了,也不能创建文件,创建文件限制达到,也不可以再写入内容了

达到软限制时,会有提醒,但还可以使用但是,当到达硬限制时,系统会提示用户并且强制终止用户的操作

dd命令是一个设备转换和连续复制命令“if=” 指定输入设备(或文件)"of="指定输出设备(或文件)"bs=" 指定读取数据块的大小"count=”指定读取数据块的数量/dev/zero “零"设备文件,可以无限的提供空字符。常用来生成-一个特定大小的文件

chmod 777 /opt/wangyibo 给权限

验证:dd if=/dev/zero of=/opt/wangyibo/123.txt bs=10M count=12[zhangsan@192 data1]$ touch {1..50}.txt

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 数据集简介 Bank Marketing数据集是一个关于银行市场营销活动的数据集,包含了一系列客户的特征和目标变量。目标变量是二分类变量,指示客户是否订阅了银行的定期存款。 数据集包含了45211个样本和17个特征: - age:年龄 - job:职业 - marital:婚姻状况 - education:教育程度 - default:是否有信用违约记录 - balance:账户余额 - housing:是否有住房贷款 - loan:是否有个人贷款 - contact:联系方式 - day:最后一次联系的日期 - month:最后一次联系的月份 - duration:最后一次联系的通话时长 - campaign:此次活动期间与该客户联系的次数 - pdays:距离上次联系该客户的时间 - previous:此次活动期间与该客户联系的次数 - poutcome:上次活动的结果 - y:是否订阅定期存款 2. 数据集预处理 首先需要将数据集导入Python中,并进行数据预处理。具体包括以下几个步骤: - 导入必要的库和数据集 - 查看数据集的基本信息、缺失值和重复值 - 对非数值型变量进行编码 - 将数据集划分为训练集和测试集 代码如下: ```python # 导入必要的库和数据集 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder bank = pd.read_csv('bank.csv', delimiter=';') # 查看数据集的基本信息、缺失值和重复值 print(bank.info()) print(bank.isnull().sum()) print(bank.duplicated().sum()) # 对非数值型变量进行编码 le = LabelEncoder() bank['job'] = le.fit_transform(bank['job']) bank['marital'] = le.fit_transform(bank['marital']) bank['education'] = le.fit_transform(bank['education']) bank['default'] = le.fit_transform(bank['default']) bank['housing'] = le.fit_transform(bank['housing']) bank['loan'] = le.fit_transform(bank['loan']) bank['contact'] = le.fit_transform(bank['contact']) bank['month'] = le.fit_transform(bank['month']) bank['poutcome'] = le.fit_transform(bank['poutcome']) bank['y'] = le.fit_transform(bank['y']) # 将数据集划分为训练集和测试集 X = bank.iloc[:, :-1] y = bank.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) ``` 3. 构建逻辑回归模型 构建逻辑回归模型需要完成以下几个步骤: - 导入必要的库 - 创建逻辑回归模型对象 - 将训练集数据拟合到模型中 - 使用测试集数据评估模型的性能 代码如下: ```python # 导入必要的库 from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report # 创建逻辑回归模型对象 logreg = LogisticRegression() # 将训练集数据拟合到模型中 logreg.fit(X_train, y_train) # 使用测试集数据评估模型的性能 y_pred = logreg.predict(X_test) print('Accuracy score:', accuracy_score(y_test, y_pred)) print('Confusion matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification report:\n', classification_report(y_test, y_pred)) ``` 4. 结果分析 运行上述代码后,可以得到模型的性能指标。以本例为例,模型的准确率为89.8%,混淆矩阵如下: ``` [[11574 380] [ 1055 658]] ``` 可以看出,在测试集上,模型预测正确的正样本有658个,预测错误的正样本有1055个;预测正确的负样本有11574个,预测错误的负样本有380个。同时,分类报告可以帮助我们更好地了解模型的性能: ``` precision recall f1-score support 0 0.92 0.97 0.94 11954 1 0.63 0.38 0.47 1713 accuracy 0.90 13667 macro avg 0.77 0.68 0.71 13667 weighted avg 0.88 0.90 0.89 13667 ``` 可以看出,模型的精确度为0.63,召回率为0.38,F1值为0.47。这表明模型的性能有待进一步提高。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值