小白怎么才能入门数据分析?

2 篇文章 0 订阅
2 篇文章 0 订阅

数据分析的理解可见我个人置顶~

数据分析涉猎范围

        首先,谢谢各位相信数据分析,那么我们接下来聊聊数据分析可以就业的前景吧!

偏业务向:

        什么是业务呢?小白在这个地方显的就特别的清纯了!因为不懂业务。其实说白了,业务是一个广泛的概念,它涵盖了各行业中需要处理的事务,但通常偏向指公司中需要做什么事情才能使得公司盈利。业务的目的主要是“售出产品,换取利润”。

        例如老板让你优化产品,那么我们要理解为什么要优化产品呢?是不是要让用户的感知再上一层楼~~,所以我们怎么优化呢?是不是要分析产品的每一个页面,每一个按钮的点击率,跳转时长,支付等各个节点的行为,来看看产品的漏洞?有没有优化的可能呢?或许是页面的布局,UI风格适配嘛?所以很多都是我们可以分析的点。

        那么业务向我们可以就业的范围可太广啦!

        例如:数据分析,商业分析,业务运营,产品运营,精细化运营,数据运营,策略运营,社群运营等各大带有"运营"字样的招聘信息,我们都可以去搜索一下看看对方的JD要求,很多都至少要求你会一个Excel的!不要小看自己,如果我们真的学会了数据分析的大多技能,我们真的可以碾压职场大多数人群,职场人千千万,真正精通Excel的其实没多少!

        当然,职场人中,恰好也是运营的这部分人,他们在工作中如果学习了数据分析,会更容易碾压其余同事!也是他们转行的一个路径。千万不要觉得夸张,凭什么碾压呢?那如果我告诉你,运营的人他们只会工具的点点点,对数据也不敏感,处理Excel慢慢悠悠的,你学会了数据分析,如果Excel不好用,那么我们可以用Python处理呢?如果Excel分析不出来的结论,我们用Python处理呢?如果Excel数据量级太大,我们用Python处理呢?如果Excel日常工作太多了,我们用Python做自动化呢?当然,用其他BI工具也会上手的比其他人快很多~

        所以,我们会了数据分析,可以做运营岗。并且运营岗要求很简单。每个公司的运营你都可以尝试~,所以我们要知道,对于走业务向,数据分析是无敌的!

偏技术向:

        偏技术向,我们更倾向于数据挖掘,算法工程师,深度学习等。一般来讲,我们要对数据结构,数学的理论,算法知识有更深刻的理解,才能入行,且学历要求90%以上都是研究生起步。对于非科班出身的人来讲,会有很大的难度。

        喜欢搞科研,搞算法的人入职的几个机遇:

        1. 拼爹

        2. 拼学历

        3. 拼实战经验

        4. 从数据分析行业转行

PS:很多招聘网站上,公司写的岗位跟真实需求其实并不匹配,有可能我们投递的岗位叫数据分析,那么有可能我们入职之后走业务向做运营了,或者走技术向搞算法,或者当一个莫得感情的提数(写SQL、ETL)机器了,所以我们一定擦亮眼睛投递简历,面试的时候适当问对方,你的工作职责大概有哪些?

数据分析的学习规划

1. SQL

        第一个学习的一定是SQL,数据库对于数据分析而言,重要级别极其高,我们不需要学习特别深的原理,在工作中说白了就是查询语句。所以我们所谓的增删改查,只需要重点练习查询语句即可。因为我们会了SQL之后,在后边学习其他知识点的时候,也可以每天敲SQL~~

        数据库的学习,建议去牛客网、力扣网在线刷SQL题。先从牛客刷,因为牛客的免费题比力扣多很多。当然,如果说你是豪爸爸,你可以VIP一路刷到天涯海角~。

        建议从简单的题开始刷,慢慢进阶。

        且在学习过程中,我们要每天刷,不管一道题还是两道题,我们重复刷也会有不同的感知。

        学习SQL需要的是一个不断学习的过程,我们要锻炼一种SQL能力,就是"脑中有图"。

        以后在写SQL题的时候,根本无需验证,你就知道对错,或者哪个地方有问题,那么你就成功了。

2. EXCEL

        我们可以学学Excel的使用,对于Excel,要达到精通级别,当然也不是绝对,因为毕竟是一个软件,所以我们如果有所了解,可以在工作中慢慢夯实自己的Excel技能。

        我们学习Excel,重点针对于一些函数出发。例如:统计类的函数,sum,count,sumif,countif。。。除此之外,最重要的则是匹配函数,例如match,index,vlookup等。

        我们学习这些功能,其实总结下来就是要慢慢培养数据的敏感度。

3. Python

        Python的内容太多,千万要注意!!

        Python有十几万种第三方库。涉猎所有岗位。例如开发前端页面的Django,Flask,例如Scrapy框架做爬虫,例如python开发岗,要深刻理解面向对象,精通函数式编程,了解模块,装饰器,闭包等功能。当然也有数据分析,算法。

        那么对于数据分析而言,我们除了学习简单的python语法以外,学学函数,学学面向对象也是必要的。除了python基础,我们可以学爬虫的相关技术,来多获取一些就业优势。除此,我们务必掌握数据分析三剑客(numpy,pandas,matplotlib),那么对于算法而言,我们如果数学底子强的,可以加深理解,来拔高自己。

数据分析的亮点

        除了上述的爬虫,算法等,还有一些亮点是加分项哦~

1. 统计学思维

        我们在真正的业务场景中,做分析的时候,如果说你会了很多种统计学的分析方法,那么对于你的思路而言,对于专业度而言,你是有很大优势的!

2. 数据分析证书

        我们在就业阶段,如果有数据分析证书,也可以提高我们的就业率。

        而且数据分析证书有很多优势:

        1. 有可能在企业中,会因为有证书而涨薪。

        2. 有的企业会每个月给你证书的补贴。

        3. 有证书,可以作为企业中项目招标的人员,那么你会收获更多,不仅仅金钱。

        4. 抵税。

        5. 提升职场中的竞争力。

如果有需要数据分析证书的,也可以联系我哦~

       

其他相关资料可私我:

小白的学习渠道

1. 自学

        建议放弃。如果你是小白,没有任何学习规划,只是在网上翻阅各类学习大纲来学的话,早就不能顺应社会啦。虽然免费课程学完技术没问题,但是你们可以想想,这么多免费课程,什么技术都涉及,那全国多少人为什么不学?全学会早成为亿万富翁了。但是为什么不try呢~?

        肯定是时间精力,生活压力,工作紧迫感等各大精神CPU导致。所以我们需要更专项的学习一个科目的话,一定要有专业人士的指点。

2. 线上视频学习

        如果是线上视频学习,建议学习能力强,自律的人,通过我个人录制的一套专项数据分析学习课程来学习~

        PS:成本较低

2. 线下培训学习

        线下培训当然效果最好,全程老师指导学习。

        PS:成本比线上视频学习略高

PS:我们学习一门新鲜的内容,一定要有合理的规划,合理的课程安排。这样才会事半功倍~

祝读者越来越有钱,越来越有成就。

有想学习的可以私信我~

对文章任何内容有想深度了解的,也可联系我~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值