【动态规划】最长子串问题汇总(五)最长连续公共子序列

系列文章目录

【动态规划】最长子串问题汇总(一)最长上升子序列

【动态规划】最长子串问题汇总(二)最长连续上升子序列

【动态规划】最长子串问题汇总(三)最长公共子序列

【动态规划】最长子串问题汇总(四)最长公共上升子序列

【动态规划】最长子串问题汇总(五)最长连续公共子序列

【动态规划】最长子串问题汇总(六)归纳对比


目录

系列文章目录

文章目录

前言

一、题目描述

二、输入输出样例

三、算法分析


前言

在练习算法的过程中,发现各种子序列问题容易混淆,问题通常是连续,公共,上升(递增)三词随意组合,本系列就最长子串(子序列)问题进行归纳对比


一、题目描述

给定两个字符串(仅包含小写字母),求其最长连续公共子序列长度


二、输入输出样例

输入是两个仅包含小写字母的字符串(数组同理),输出是一个正整数,表示最长连续公共子序列的长度

输入:s1 = "abcdefg", s2="acdefiok"

输出:4

此样例中,最长公共子序列是 "acdef",但最长连续公共子序列是 "cdef"


三、算法分析

dp[i][j]=\left\{\begin{matrix} dp[i-1][j-1]+1 & & s1[i-1]=s2[j-1]\\ 0& &else \end{matrix}\right.

if (s1[i-1] ! = s2[j-1])   dp[i][j]=0

最大个数用 cnt 记录,所以当出现字符不相等时,说明不连续了,直接从 0 开始计数

cnt 被更新时,把下标赋给 idx,此时 idx 表示当前最长连续公共子序列的最后1个字符的下标

int getLength(string s1,string s2){
	int m=s1.size(),n=s2.size(); //取字符串长度
	vector<vector<int>> dp(m+1,vector<int>(n+1,0)); //开辟dp[m+1][n+1]
	int cnt=0,idx=0;//个数,连续公共子序列终止的下标
	for(int i=1;i<=m;i++){ //遍历 s1
		for(int j=1;j<=n;j++){ //遍历 s2
/*------------------区别部分------------------*/
			if(s1[i-1]==s2[j-1]){ //当前位置字符相同
				dp[i][j]=dp[i-1][j-1]+1;
				if(cnt<=dp[i][j]){ //更新个数
					idx=i; // <=是保证在最长连续公共子序列不唯一的情况下,输出最后一个
					cnt=dp[i][j];
				}
			}
			else{ //字符不相同,出现不同直接清 0(因为要求连续)
				dp[i][j]=0;
			}
/*------------------区别部分------------------*/
		}
	}
	return cnt;
}

如果题目还要求输出最长连续公共子串。且如果不唯一,则输出 s1 中的最后一个

idx-=cnt; //原来的 idx是连续公共子序列最后一个字符的下标
while(cnt){
	char c=s1[idx];
	idx++; cnt--;
	cout<<c;
}

输入:s1 = "abcdefg", s2="acdefiok"

输出:ecdf

/*------------------区别部分------------------*/

其中的代码是各种最长子串(子序列)问题的具体区别

/*------------------区别部分------------------*/

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列(Longest Common Subsequence, 简称LCS)问题是一个经典的动态规划问题。LCS问题的目标是找到两个序列中最长公共子序列的长度。 首先,我们需要理解LCS的定义。根据引用,两个序列的LCS包含了这两个序列的前缀的最长公共子序列。换句话说,我们可以通过比较两个序列的最后一个元素是否相等来确定LCS。如果最后一个元素相等,则LCS的长度会增加1;如果最后一个元素不相等,则我们需要考虑将某个序列的最后一个元素舍弃,然后求解剩余序列的LCS。因此,LCS问题具有最优结构性质。 根据引用,需要注意最长公共子串(Longest Common Substring)和最长公共子序列(LCS)的区别。最长公共子串是一个连续的部分,而最长公共子序列则是从不改变序列的顺序,而从序列中去掉任意的元素而获得新的序列。简单来说,子串中字符的位置必须是连续的,而子序列则可以不必连续。 接下来,我们可以通过动态规划方法解决LCS问题动态规划是一种将问题分解为问题并存储问题解的方法。我们可以使用一个二维数组来存储问题解,其中数组元素dp[i][j]表示序列1的前i个元素和序列2的前j个元素的LCS的长度。 具体的动态规划算法如下: 1. 初始化一个二维数组dp,其中dp[i][j]的初始值为0。 2. 从左到右遍历序列1的每个元素,同时从上到下遍历序列2的每个元素。 3. 如果序列1的第i个元素与序列2的第j个元素相等,则dp[i][j]的值等于dp[i-1][j-1]加1。 4. 如果序列1的第i个元素与序列2的第j个元素不相等,则dp[i][j]的值等于dp[i-1][j]和dp[i][j-1]中的较大值。 5. 最终,dp[m][n]即为序列1和序列2的LCS的长度,其中m和n分别为序列1和序列2的长度。 通过上述动态规划算法,我们可以求解最长公共子序列的长度。如果需要求解具体的最长公共子序列,我们可以根据dp数组的构建过程进行回溯。 综上所述,使用动态规划方法可以解决最长公共子序列问题动态规划算法的核心思想是将问题分解为问题并存储问题解,通过填充dp数组可以求解最长公共子序列的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值