【动态规划】最长子串问题汇总(四)最长公共上升子序列

系列文章目录

【动态规划】最长子串问题汇总(一)最长上升子序列

【动态规划】最长子串问题汇总(二)最长连续上升子序列

【动态规划】最长子串问题汇总(三)最长公共子序列

【动态规划】最长子串问题汇总(四)最长公共上升子序列

【动态规划】最长子串问题汇总(五)最长连续公共子序列

【动态规划】最长子串问题汇总(六)归纳对比


目录

系列文章目录

文章目录

前言

一、题目描述

二、输入输出样例

三、算法分析


前言

在练习算法的过程中,发现各种子序列问题容易混淆,问题通常是连续,公共,上升(递增)三词随意组合,本系列就最长子串(子序列)问题进行归纳对比


一、题目描述

给定两个字符串(仅包含小写字母),求其最长公共上升子序列长度


二、输入输出样例

输入是两个仅包含小写字母的字符串(数组同理),输出是一个正整数,表示最长公共上升子序列的长度

输入:s1 = "abcdeb", s2="aceb"

输出:3

此样例中,最长公共子序列是 "aceb",但最长公共上升子序列是 "ace"


三、算法分析

定义一个二维 dp 数组dp[i][j] 表示第一个字符串前 i 个字符、第二个字符串前 j 个字符、且以s2[ j ]结尾的子序列长度 

dp[i][j]=\left\{\begin{matrix} dp[i-1][j] & &s1[i-1]\neq s2[j-1] \\ max\left \{ dp[i][j],dp[i-1][k]+1 \right \}& &s1[i-1]=s2[j-1] \end{matrix}\right.

状态分为两种( i:1~n )

①最长公共上升子序列不包含 s1[i-1],所以用 dp[i-1][ j] 来更新 dp[i][ j]

②最长公共上升子序列包含 s1[i-1](即s1中第 i 个字符),这种状态划分分析起来比较困难

因为已经包含了s1[i-1],此时有s1[i-1]==s2[j-1],则看最长公共上升子序列的倒数第2个数

如果:Ⅰ  最长公共上升子序列只包含s1[i-1],倒数第2个数为空,长度为 1

Ⅱ  最长公共上升子序列的倒数第2个数是s2[0]的集合,最大长度是dp[i-1][1]+1

Ⅲ  最长公共上升子序列的倒数第2个数是s2[0~1]的集合,最大长度是dp[i-1][2]+1

Ⅳ  ......

     最长公共上升子序列的倒数第2个数是s2[0~ j-2 ]的集合,最大长度是dp[i-1][ j-1]+1

所以  for(int k=1;k<j;k++){  // k: 1~ j - 1

                 if(s1[i-1]>s2[k-1])   // s1[i-1]s2[k-1]分别为最长公共上升子序列的倒数第1、第2个
                        max_len=max(max_len,dp[i-1][k]+1);
         }

ps:有人可能不理解为什么把s2[k-1]看作为最长公共上升子序列的倒数第2个由于我们定义dp[i][j]表示第一个字符串前 i 个字符、第二个字符串前 j 个字符、且以s2[ j ]结尾的子序列长度,所以在dp[i-1][ k],s2[k-1]为s1[0~i-2]和s2[0~k-1]的最长公共上升子序列的倒数第1个


例如:dp[3][2]的状态表示为"abc""ac",最长公共上升子序列为"ac",为状态②,dp[3][2]=2

dp[4][2]的状态表示为"abcd""ac",最长公共上升子序列为"ac",不包含s1[3]'d'

状态①,dp[4][2]=dp[3][2]

int getLength(string s1,string s2){
	int m=s1.size(),n=s2.size(); //取字符串长度
	vector<vector<int>> dp(m+1,vector<int>(n+1,0)); //开辟dp[m+1][n+1]
	for(int i=1;i<=m;i++){ //遍历 s1
		for(int j=1;j<=n;j++){ //遍历 s2
/*------------------区别部分------------------*/
			if(s1[i-1]!=s2[j-1]){ 
				dp[i][j]=dp[i-1][j];//子序列不包含s1[i-1],用dp[i-1][j]来更新dp[i][j]
			}
			else{ //s1[i-1]==s2[j-1] 当前(i,j)位置字符相同
				int max_len=1;
				for(int k=1;k<j;k++){ //遍历 s2[0~j-2],即第 1 到第 j-1个字符
					if(s1[i-1]>s2[k-1]) //符合上升条件
						max_len=max(max_len,dp[i-1][k]+1);
				}
				dp[i][j]=max(max_len,dp[i][j]);
			}
/*------------------区别部分------------------*/
		}
	}
	int ans=0;
	for(int i=0;i<=n;i++) res=max(res,dp[m][i]);
    //例"abcdeb"、"aceb",dp[6][0]=0,dp[6][1]=1,dp[6][2]=2,dp[6][3]=3
    //dp[6][4]=2(dp[6][4]=dp[5][4]=dp[3][4]==dp[2][4]=2)
	return ans; // 3
}

dp[6][4] 可以自行对着程序分析一下

/*------------------区别部分------------------*/

其中的代码是各种最长子串(子序列)问题的具体区别

/*------------------区别部分------------------*/

  • 22
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值