- 博客(84)
- 收藏
- 关注
原创 [已解决] RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa,
复现3D目标检测Occ任务时遇到CUBLAS_STATUS_INVALID_VALUE错误,通过执行"unset LD_LIBRARY_PATH"成功解决
2025-06-12 16:31:58
22
原创 Linux 如何移动目录 (文件夹) (内含 Linux 重命名方法)
本文介绍了在linux中移动目录的工作流,包括单个目录的移动和批量移动;包括目标路径下有重名文件/目录是否覆盖的情况;已经重命名方法
2025-06-08 15:27:02
303
原创 在 Linux 服务器上无需 sudo 权限解压/打包 .7z 的方法(实用命令)
本文介绍了使用Python库py7zr进行7z文件压缩和解压的方法。解压步骤包括:1)在用户目录安装Python环境;2)安装py7zr库;3)编写解压脚本并执行。压缩步骤包括:1)安装py7zr库;2))执行压缩操作。两种方法均无需管理员权限
2025-06-02 18:10:05
393
原创 [已解决] Linux 安装 CUDA 成功实践(指定版本-添加环境变量-无管理员权限)-Command ‘nvcc‘ not found-CUDA_HOME environment variable
之前被AutoDL照顾的太好了,AutoDL都是预装CUDA,学校的服务器环境是没有CUDA的本帖可解决的问题1:安装mmdet3d需要显卡+CUDA,但是只有cudatoolkit没有CUDA,安装报错;原因分析:nvcc(CUDA 编译器)是 CUDA 工具包的核心组件,我们当前的环境中未安装完整的 CUDA 工具包。虽然通过 conda list 看到了 cudatoolkit=11.3.1,但 Conda 的 cudatoolkit 通常仅包含运行时库(如 libcudart.so),不包含编
2025-06-02 10:24:32
1156
原创 [科研实践] VS Code (Copilot) + Overleaf (使用 Overleaf Workshop 插件)
本讲解主要围绕使用VS Code连接Over Live进行本地与在线协同工作展开。详细介绍了使用Over LiveWorkshop插件的方法,包括如何在VS Code中登录Over Live网站、搜索项目、获取API代码等步骤。此外,另一种连接Over Live的方法——Cursor也有讲解:如何在VS Code中导入这个扩展
2025-05-28 13:27:56
686
原创 [已解决] LaTeX “Unicode character“ 报错 (中文字符处理)
在 LaTeX 文档中处理中文时,常遇到 "Unicode character" 报错,这是由于默认的 pdflatex 编译器不支持中文字符。解决方法包括:1) 改用 xelatex
2025-05-17 23:29:04
404
原创 [已解决] 第一次使用 VS Code / Cursor / Trae 的 PowerShell 终端 conda activate 进不去环境的常见问题
在PowerShell中使用Conda时,常见问题是无法正确激活指定环境。本文提供了解决该问题的步骤:首先,运行conda init powershell命令以初始化PowerShell,并重启终端或编辑器以确保配置文件加载。其次,检查并调整PowerShell的执行策略,建议设置为RemoteSigned以允许脚本运行。最后,通过观察PowerShell提示符的变化确认环境是否成功激活。按照这些步骤操作后,问题通常能够得到解决。
2025-05-14 17:54:09
680
原创 MPC控制器从入门到进阶(小车动态避障变道仿真 - Python)
本文介绍了模型预测控制(MPC)的基本概念及其在自动驾驶中的应用。学习完本文,你将能够实现小车变道避障的仿真,我们一起动手学习
2025-05-13 08:40:01
1407
原创 从 Git 到 GitHub - 使用 Git 进行版本控制 - Git 常用命令
本文旨在从零开始引导读者学习如何使用 Git 进行版本控制,并结合 GitHub 进行远程仓库管理。文章首先介绍了版本控制、Git 和 GitHub 的核心概念,强调了它们的重要性和优势。接着,详细说明了如何在 Windows、macOS 和 Linux 系统上安装 Git,并配置用户信息。随后,文章逐步讲解了本地仓库的基本操作,包括创建仓库、暂存、提交、查看历史、分支和合并等。最后,简要介绍了 GitHub 的远程仓库操作,如创建远程仓库、连接本地与远程、推送、克隆和拉取,以及基本的协作流程(如 Fork
2025-05-09 10:41:08
1023
原创 HPC (GPU)集群常用命令 - slurm作业调度方法 - ssh登录集群独占GPU(VS Code) - .sh/.py脚本的运行(持续更新)
【常用linux命令】HPC 集群常用命令 (封闭式管理的slurm调度系统) :最近因加入了导师团队,需要将在AutoDL上的小规模实验数据+代码迁移到学校的HPC集群中进行大规模实验;但现实很骨感,学校的集群是已封闭式管理的;而且slurm工作的运行调度逻辑和AutoDL这类服务器有很大差别;上传数据的单个文件大小卡在6GB以下,得分卷(避坑指南可参考博客);之后会持续更新一些个人经验
2025-05-07 16:37:17
959
原创 [已解决] 本地两台 win电脑 (以太网) 网线传输文件 - 局域网连接 (解决windows无法访问共享文件问题 - Windows 安全中心输入网络凭据 用户名/密码 不正确问题)
由于要本地传输的数据比较大,接近1T,正好有网线,试着本地网线高速传输(实测113MB/s)踩了很多坑,想把亲测成功的经验分享出来帮助更多同学
2025-05-06 21:47:51
2239
原创 LQR 状态空间入门:以 “倒立摆” 仿真案例建模( MPC 是 LQR 的泛化)
某种程度上,可以认为无约束、无限时域的线性 MPC 问题,其解会趋近于 LQR 的解。LQR 可以看作是 MPC 的一个非常特殊的基础情况。在设计 MPC 时,其代价函数中的 Q 和 R 矩阵也常常借鉴 LQR 的调参思想
2025-04-30 17:42:00
899
原创 [论文梳理] 足式机器人规划&控制流程 - 接触&碰撞的控制 - 模型误差 - 自动驾驶车的安全&合规(4个课堂讨论问题)
机器人学 课堂讨论 (seminar) 记录;问题驱动的学习,有助于进一步提出有价值的问题;梳理机器人运动规划和控制领域的主流问题和技术;以问题为框架,梳理论文更高效
2025-04-27 14:38:52
1164
原创 刚体运动 (位置向量 - 旋转矩阵) 笔记 1.1~1.3 (台大机器人学-林沛群)
在正式进入机械手臂的具体内容之前,我们需要补充一些必备的数学基础,核心在于如何精确地描述一个“刚体”(Rigid Body)的运动状态。这是因为在后续分析中,我们通常将机械手臂的各个部件视为刚体来处理
2025-04-26 21:06:09
1032
原创 机器人学入门 (刚体空间 - 正/逆运动学 - 轨迹规划) 笔记 0.1 (台大机器人学-林沛群)
机器人从问世至今已经发展了几十年,如今我们对机器人的定义已经非常广泛。简单来说,机器人就是一个人造的非生物系统,它可以有实体部分,也可以包含虚拟部分。Dirty(肮脏的)Dangerous(危险的)Dull(枯燥的)这些人类不愿意从事的工作,我们希望用机器人来替代。而近一二十年,机器人技术蓬勃发展,出现了更多面向的应用,比如:服务型机器人(老人照护、陪伴)导览机器人(图书馆、博物馆)教育娱乐机器人近年热门的无人驾驶汽车(本质上也是机器人)
2025-04-26 14:41:41
880
原创 Docker 从入门到进阶 (Win 环境) + Docker 常用命令
通过本文的详细指南,您应该能够在Windows环境下顺利安装和配置Docker,并掌握下载和管理镜像的基本操作Docker的强大功能将大大简化您的应用部署和管理流程,提升开发效率现在,你已经掌握了Windows下Docker的核心技能!
2025-04-06 23:52:46
4055
原创 [已解决] RuntimeError: Expected to have finished reduction in the prior iteration before starting
PyTorch的报错信息这个错误的核心意思是:在使用 DDP 进行分布式训练时,PyTorch 期望在每次迭代的反向传播过程中,模型的所有参数都应该收到梯度。然后 DDP 会在各个 GPU 之间同步(reduce)这些梯度。如果在某次迭代中,有些参数因为没有参与最终loss的计算,导致它们没有梯度,那么 DDP 在尝试同步这些参数的梯度时就会“卡住”,因为它在等待一个永远不会到来的梯度,从而在下一次迭代开始前抛出此错误。
2025-04-05 14:52:45
813
原创 5种生成模型(VAE、GAN、AR、Flow 和 Diffusion)的对比梳理 + 易懂讲解 + 代码实现
本文汇总了常用的深度学习模型,深入介绍其原理及应用:VAE(变分自编码器)、GAN(生成对抗网络)、AR(自回归模型 如transformer)、Flow(流模型)和Diffusion(扩散模型)
2025-03-26 11:13:49
3869
4
原创 [已解决] error: metadata-generation-failed + This package requires Rust and Cargo to compile extensions
这个错误是由于在安装依赖(例如 safetensors 包)时,需要用到 Rust 语言的编译工具链,而系统中没有安装 Rust 或者 Cargo 没有配置到 PATH 环境变量中所导致的。为了解决这个问题,你可以按照以下步骤操作:
2025-03-02 13:58:19
1582
原创 [已解决] ModuleNotFoundError: No module named ‘langgraph.checkpoint.sqlite‘
补安装 langgraph-checkpoint-sqlite,貌似这个包并不在langgraph里,需要额外下载
2025-02-27 16:16:01
889
原创 [实验日志] VS Code 连接服务器上的 Python 解释器进行远程调试
PyCharm的缺点是:不能实时同步、操作繁琐,需要维护两份代码。而VS Code是通过SSH(Secure Shell)的方式连接到远程服务器,换句话说,VS Code在远程开发过程中扮演的角色更像是一款终端模拟工具,它不需要繁琐的上传和下载步骤,实时性更好,只需要在Windows上保存一下,就会瞬间同步到远程服务器。
2025-02-06 15:38:15
3011
1
原创 注意力机制 → Transformer + 位置编码 (掩码softmax - 查询-键-值(Query-Key-Value,QKV)模式的理解) —— 笔记4.1《动手学深度学习》
本文会在李沐的讲解的基础上,补充李宏毅的讲解,大大降低学习曲线的陡峭程度。接下来的文章只讲重点,以最快的速度直奔Transformer。目录1. 注意力提示1.1 两种注意力:1.2非参注意力池化层如何理解距离(以词嵌入为例)1.3参数化的注意力池化层2. 自注意力2.1 为什么需要自注意力2.2 自注意力层2.3 注意力打分 (关联程度)2.4 从注意力权重到输出2.5 用矩阵理解自注意力运算2.6 多头注意力2.7 (复杂度) 对比CNN和RNN
2025-01-03 17:56:57
2112
原创 [已解决] 报错:TypeError: FormatCode() got an unexpected keyword argument ‘verify‘,原因是yapf版本过高
原因 - yapf版本过高,得删除现有版本0.40.2,重新安装0.40.1版本即可:
2024-12-23 18:10:24
665
原创 [已解决] error: command ‘/usr/bin/gcc‘ failed with exit code 1”问题
出现这个错误,是GCC编译器出问题了,有三个可能得原因需要排查:如GCC未正确安装、环境变量配置不正确、代码中存在语法错误等
2024-12-20 15:39:38
6457
原创 [科研实践·已解决] 写论文时 Latex 本地 (TeX Live) 引用文献出错不显示,但在线 (Overleaf) 却可以,原因是缺少 BibTeX 编译步骤,pdfLaTeX 执行顺序不对
在 Overleaf 中,编译流程是自动完成的,而本地环境可能需要手动执行。如果没有正确运行 BibTeX,引用将显示为 [?],并且参考文献列表不会生成。
2024-12-12 19:36:52
1494
3
原创 束搜索 (beam search - 改进版贪心搜索 - 贪心最快但效果不够好 - 穷举搜索最好但是太慢) —— 笔记3.11《动手学深度学习》
束搜索 (beam search) 是 改进版贪心搜。贪心最快,但效果不够好;穷举搜索最好,但是太慢。束搜索介于两者之间,更高效。束搜索通过灵活选择束宽k,在正确率和计算代价之间进行权衡。
2024-11-29 09:44:38
950
原创 序列到序列的学习 (seq2seq - 词嵌入 - Embedding层 - mask掩码 - 评估指标BLEU) + 代码实现 —— 笔记3.10《动手学深度学习》
根据“编码器-解码器”架构的设计, 我们可以使用两个循环神经网络来设计一个序列到序列学习的模型。在实现编码器和解码器时,我们可以使用多层(GRU)循环神经网络。
2024-11-28 13:20:53
1654
原创 [已解决]-常见d2l.read_data_nmt()报错:UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0xaf in posi-动手学深度学习
看看报错:UnicodeDecodeError: 'gbk' codec can't decode byte 0xaf。原因分析:少了utf-8;咱看的视频课程还是2021年版本的,jupyter代码是新下载的(是正确的),而d2l包的源代码还是21年老版本的,有很多问题还没改过来。
2024-11-27 13:21:26
430
原创 机器翻译 & 数据集 (NLP基础 - 预处理 → tokenize → 词表 → 截断/填充 → 迭代器) + 代码实现 —— 笔记3.9《动手学深度学习》
序列转换模型在各类现代人工智能应用中发挥着至关重要的作用, 因此我们将其做为本章剩余部分和attention机制章节的重点!机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,我们可以将低频词元视为相同的未知词元。通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。
2024-11-23 12:36:55
1515
原创 Bi-RNN (双向循环神经网络 - 基于深层RNN - 擅长抽取特征 - 不适合预测未来) + 代码实现 —— 笔记3.8《动手学深度学习》
双向循环神经网络通过反向更新的隐藏层来利用方向时间信息;通常用来对序列抽取特征、填空,而不是预测未来。
2024-11-22 10:34:34
1061
原创 深层RNN (深层循环神经网络 - RNN-GRU-LSTM的加深操作类似 - 加入更多非线性) + 代码实现 —— 笔记3.7《动手学深度学习》
在深度循环神经网络中,隐状态的信息被传递到当前层的下一时间步和下一层的当前时间步。有许多不同风格的深度循环神经网络, 如长短期记忆网络、门控循环单元、或经典循环神经网络。 这些模型在深度学习框架的高级API中都有涵盖。总体而言,深度循环神经网络需要大量的调参(如学习率和修剪) 来确保合适的收敛,模型的初始化也需要谨慎。
2024-11-22 09:58:05
882
原创 LSTM (长短期记忆网络 - 基于RNN - 比GRU老20年 - 体现注意力的思想) + 代码实现 —— 笔记3.6《动手学深度学习》
长短期记忆网络有三种类型的门:输入门、遗忘门和输出门。长短期记忆网络的隐藏层输出包括“隐状态”和“记忆元”。只有隐状态会传递到输出层,而记忆元完全属于内部信息。长短期记忆网络可以缓解梯度消失和梯度爆炸。LSTM 和其他序列模型(例如门控循环单元GRU)的成本是相当高的。 在后面的内容中,我们将讲述更高级的替代模型,如Transformer。
2024-11-21 15:17:44
1528
原创 GRU (门控循环单元 - 基于RNN - 简化LSTM又快又好 - 体现注意力的思想) + 代码实现 —— 笔记3.5《动手学深度学习》
在一个序列中,不是每个观察值都是同等重要;门控循环神经网络可以更好地捕获时间步距离很长的序列上的依赖关系。重置门有助于捕获序列中的短期依赖关系。更新门有助于捕获序列中的长期依赖关系。重置门打开时,门控循环单元包含基本循环神经网络;更新门打开时,门控循环单元可以跳过子序列。
2024-11-21 14:24:10
1470
2
原创 RNN (循环神经网络 - 从mlp到rnn - 困惑度 - 梯度剪裁) + 代码实现 —— 笔记3.4《动手学深度学习》
我们在本节中会训练一个基于循环神经网络的字符级语言模型,根据用户提供的文本的前缀生成后续文本。一个简单的循环神经网络语言模型包括输入编码、循环神经网络模型和输出生成。循环神经网络模型在训练以前需要初始化状态,不过随机抽样和顺序划分使用初始化方法不同。当使用顺序划分时,我们需要分离梯度以减少计算量。在进行任何预测之前,模型通过预热期进行自我更新(例如,获得比初始值更好的隐状态)。梯度裁剪可以防止梯度爆炸,但不能应对梯度消失。
2024-11-20 20:54:52
1700
原创 语言模型 (NLP基础 - 马尔可夫模型 - 数据集 & 迭代器) + 代码实现 —— 笔记3.3《动手学深度学习》
语言模型是自然语言处理的关键。𝑛元语法通过截断相关性,为处理长序列提供了一种实用的模型。长序列存在一个问题:它们很少出现或者从不出现。齐普夫定律支配着单词的分布,这个分布不仅适用于一元语法,还适用于其他𝑛元语法。通过拉普拉斯平滑法可以有效地处理结构丰富而频率不足的低频词词组。读取长序列的主要方式是随机采样和顺序分区。在迭代过程中,后者可以保证来自两个相邻的小批量中的子序列在原始序列上也是相邻的。
2024-11-19 10:55:28
981
原创 文本预处理 (NLP基础 - 词元化 tokenize - 词表 - 文本转索引) + 代码实现 —— 笔记3.2《动手学深度学习》
文本是序列数据的一种最常见的形式之一。例如,一篇文章可以被简单地看作一串单词序列,甚至是一串字符序列。为了对文本进行预处理,我们通常将文本拆分为词元,构建词表将词元字符串映射为数字索引,并将文本数据转换为词元索引以供模型操作
2024-11-15 16:48:56
940
原创 [实验日志·已解决] 如何下载 + 加载本地的BERT预训练模型 (OSError: Can‘t load tokenizer for ‘bert-base-uncased‘.)
的bert预训练模型报错长这样,说明访问不了外网,服务器也不太方启用代理VPN,咱可以使用下载到本地的bert模型。不管你是从hugging-face还是哪里下载来的模型(pytorch版)文件夹,应该包含以下三个文件,over,网上很多教程对小白很不友好,转载记录一下本人按照网上帖子的成功实践的经验,希望能帮到你。很多下载的模型文件夹里面上述三个文件名字可能会有不同,一定要注意!至此,你就能够使用你的本地bert了!
2024-11-14 09:54:35
5198
5
原创 序列模型 (自回归/马尔科夫模型 - 用很短的历史预测下一时间步) + 代码实现 ——笔记3.1《动手学深度学习》
时序模型中,当前数据跟之前观察到的数据相关;自回归模型使用自身过去数据来预测未来;马尔科夫模型假设当前只跟最近少数数据相关,从而简化模型;潜变量模型使用潜变量来概括历史信息;
2024-11-13 00:05:10
1339
原创 ResNet 残差网络 (乘法→加法的思想 - 残差连接是所有前沿模型的标配) + 代码实现 ——笔记2.16《动手学深度学习》
ResNet经过多年改进,有了超多版本,一般使用预训练的resnet50就够啦现在所有新的网络,不管是Bert还是Transformer,Residual connection(残差连接)算是标配了,得到了广泛应用Residual connection 在一定程度上体现了“乘法变加法”的思想比如Transformer在多头注意力机制之后,会将输入与注意力层的输出相加
2024-11-08 18:38:16
3572
原创 批量归一化 BN(Batch Normalization) (减少重复学习 - 加速损失收敛) + 代码实现 ——笔记2.15《动手学深度学习》
批量归一化固定小批量中的均值和方差,然后学习出适合的偏移和缩放;可以加速收敛速度(比如以前学习率是0.01,现在用了批量归一化后,可以调到0.1)不会出现之前:学习率太大的话,上面 (靠近损失的梯度) 会炸掉;不会出现之前:学习率太小的话,下面 (靠近数据的模型参数) 会学不动;每一个层的输出都通过均值方差放在一起了,上下层的分布都差不多是正态分布;但一般不改变模型精度
2024-11-08 11:06:20
2564
LQR-倒立摆-Python仿真代码
2025-04-30
efficientnet-b7-3rdparty-8xb32-aa-in1k-20220119-bf03951c.pth
2024-12-21
在Pycharm中配置集成Git,内附详细文档html+Git-2.46.2-64-bit.exe
2024-09-28
内含《动手学深度学习(pytorch版)》所需的全部 python 3.8 包,可以本地 pip install 搭建环境
2024-09-19
《动手学深度学习 (PyTorch版)》的全部PPT(爬取官网资源转存到了本地)
2024-09-19
深度学习基础:面向对象(黑马程序员Python)
2024-09-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人