- 博客(4)
- 问答 (1)
- 收藏
- 关注
原创 【论文阅读】Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
研究对象:深度线性神经网络(尽管输入输出映射是线性的,但权重的梯度下降动态呈现非线性)。关键发现深度线性网络表现出类似非线性网络的现象,如长时间平台期后快速下降、贪心无监督预训练比随机初始化收敛更快。理论分析表明,即使网络深度趋于无穷,特定初始化条件下学习速度仍有限且与深度无关。随机正交初始化与无监督预训练类似,可实现与深度无关的学习时间,并在非线性网络中保持梯度有效传播(需处于 “边缘混沌” 状态)。
2025-08-17 20:00:24
647
原创 【论文阅读】RestorerID: Towards Tuning-Free Face Restoration with ID Preservation
人脸恢复在严重退化情况下(如重度模糊或压缩)仍难以有效保留身份信息。现有参考引导方法(如基于对齐或个性化调优的方案)存在或的问题。为此,本文提出将身份注入与基础盲恢复模型结合,通过独立提取低质量(LQ)图像的结构特征和参考图像的身份特征,分别通过残差块(ResBlock)和注意力模块(Attention)注入扩散 UNet,确保特征融合无参数冲突。针对 LQ 与参考图像因光照、姿态差异导致的和,设计自适应平衡模块,通过特征交互增强潜在表示,减少信息冲突。
2025-08-12 16:45:10
750
原创 【论文阅读】FreePCA: Integrating Consistency Information across Long-short Frames in Training-free Long Vi
长视频生成任务需要利用在短视频上训练的模型来生成更长的视频,但由于视频帧数不同,会出现分布偏移(即生成数据与训练数据的分布不匹配)。这一任务需要同时利用短视频原始帧的局部信息(提升视觉和运动质量)和长视频整体的全局信息(保证外观一致性)。现有无训练方法难以有效融合这两种信息 —— 因为视频中的外观和运动紧密耦合,导致生成的视频要么运动不一致,要么视觉质量差。本文提出:通过主成分分析(PCA),可以将全局和局部信息精确解耦为一致的外观信息和运动强度信息,从而实现全局一致性与局部质量的精细化互补融合。
2025-08-12 15:08:58
657
原创 【论文阅读】Fine-structure Preserved Real-world Image Super-resolution via Transfer VAE Training
TVT~
2025-08-01 17:28:43
999
空空如也
c++请问怎样使一个计算多次运行 选择退出才退出呢
2021-06-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人