最新Java--敲重点!JDK1(1),字节面试编程

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 第一步曲:根据key得到hashCode值
  • 第二步曲:根据hashCode值计算出hash值
  • 第三步曲:根据hash值计算出哈希表数组index下标
  • 第四步曲:将元素节点保存到哈希表指定数组index下标

HashMap添加元素的示例代码:

        HashMap<Object, Object> map = new HashMap<>();
        map.put("name","Justin");

HashMap底层put(key,value)方法源码:

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

再看下,hash方法实现源码:

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

接下来将解读HashMap底层源码添加元素四部曲具体实现

第一步曲:根据key得到hashCode值

以上面示例代码说明,这里key是字符串"name",String重写了计算字符串hashCode值的hashCode()方法,源码如下:
在这里插入图片描述
计算得到hashCode值为3373707

第二步曲:根据hashCode值计算出hash值

hash值计算的过程用到了^(异或)和>>>(无符号右移)两种位运算
(h = key.hashCode()) ^ (h >>> 16)(3373707) ^ (3373707 >>> 16)
这里为了方便展示,二进制每四位使用空格格式化,位运算过程如下:
在这里插入图片描述
计算key="name"的hash值二进制结果是1100110111101010111000转成十进制为3373752

进制在线转换:https://c.runoob.com/front-end/58/
在这里插入图片描述
即计算key="name"的hash值为3373752,也可以debug断点往后查看hash值刚好也是这个值

第三步曲:根据hash值计算出哈希表数组index下标

公式:i = (n - 1) & hash
在这里插入图片描述
这里公式(n - 1) & hash 用到了&按位与运算(都为1则得1),奥妙之处在于n表示HashMap中的数组容量大小,并且刚好是16,32,64…2的次方,这种情况其实是等效于 hash % n 取模计算出的数组index下标值,并且下标不会超过容量(n-1)即能够保证不会数组下标越界

但是HashMap这里没有使用%取模,而是使用位运算,直接对内存数据进行操作,效率最高,如果使用%取模需要先将内存数据转成十进制再进行运算,多了这部分的性能开销,效率会变低

HashTable底层倒是用的%取模,hash值与十六进制0x7FFFFFFF做按位与运算目的是为了保证hash值始终是正数
在这里插入图片描述
有的小伙伴可能会问了,使用%取模计算,那这里为啥HashTable还在用,我想说的是其实也可以优化,只不过HashTable本身就是主打synchronized线程安全,也就不考虑优化%取模为位运算了吧
在这里插入图片描述

第四步曲:将元素节点保存到哈希表指定数组index下标

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //该位置首次添加节点,则直接新建节点添加
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                //如果节点是红黑树,调用方法进行添加元素
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //如果节点是链表,则遍历链表
                for (int binCount = 0; ; ++binCount) {
                    //遍历链表到最后一个节点
                    if ((e = p.next) == null) {
                        //新建节点进行添加
                        p.next = newNode(hash, key, value, null);
                        //如果遍历指定位置的链表现有节点已经是大于等于8个了
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //则当前节点,需要通过该方法进行添加
                            //如果数组容量大于64,该过程会进行链表转化为红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //HashMap对于key已经存在的处理情况是
            //除非该key对应的value为null,否则一律不做任何处理
            //Hashtable中则是会直接更新key对应的value
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //集合修改次数,没操作一次+1
        ++modCount;
        //HashMap容量大小大于临界值,则进行resize()扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

终曲:为什么HashMap底层源码用这么多位运算?

关于位运算的使用,文中在介绍第三步曲时,也提到了HashMap计算数组下标使用%取模和位运算的问题,使用于位运算的奥妙之处在直接从内存读取数据进行计算,不需要转成十进制,如果使用%取模需要先转成十进制,有性能开销,效率比较低

HashMap底层除了文中提到的^按位异或、>>>无符号右移、&按位与位运算,其实在HashMap的扩容机制resize()中,还用到了<<左移运算
oldCap << 1
在这里插入图片描述
这里oldCap << 1刚好是两倍,可以总结的说一个数与n进行左移运算,结果为这个数乘以2的n次方
oldCap << 1 等值 oldCap = oldCap * (2的n次方)
同理,一个数与n进行右移运算结果为这个数除以2的n次方
oldCap >> 1 等值 oldCap = oldCap / (2的n次方)

**

HashMap链表转为红黑树

红黑树结构

在这里插入图片描述

红黑树五大特性

  • 节点有红色或黑色两种;
  • 根节点是黑色;
  • 叶子节点全部是黑色(如图方框是叶子节点);
  • 红色节点必须配两个黑色节点(即保证任意路不会出现两个连续红色节点);
  • 从任意节点到该节点下所有叶子节点包含的黑色节点个数相同(也简称黑高)。

HashMap链表转为红黑树过程

代码示例:

public class Test {
    public static void main(String[] args) {
        HashMap<Object, Object> map = new HashMap<Object, Object>();
        //下标为0
        map.put(null, "Justin");
        map.put(16, "Justin");

        //下标为8
        map.put(8, "Justin");      //链表第1个节点
        map.put(24, "Justin");     //链表第2个节点
        map.put(40, "Justin");     //链表第3个节点
        map.put(56, "Justin");     //链表第4个节点
        map.put(72, "Justin");     //链表第5个节点
        map.put(88, "Justin");     //链表第6个节点
        map.put(104, "Justin");    //链表第7个节点
        map.put(120, "Justin");    //链表第8个节点
        map.put("name", "Justin"); //在添加第9个节点时,链表会被转换为红黑树
    }
}

上述代码添加元素完成后,大多数人认为,底层哈希表的数据结构如下:
在这里插入图片描述
看起来好像没啥毛病,但实际哈希表index=8的位置链表并不会转成红黑树,原因如下:
在这里插入图片描述
再来看下treeifyBin(tab,hash)为什么不将链表转成红黑树?
在这里插入图片描述
其中tab.length < MIN_TREEIFY_CAPACITY表示只要哈希表数组大小于64容量的,不可能会发生链表树化的过程,所以示例代码中,在哈希表数组下标index=8位置,添加第9个key="name"元素时,此时哈希表大小只有16, tab.length < MIN_TREEIFY_CAPACITY即16 < 64 接进行resize()扩容并重新计算各个元素存储的位置了,并不会走后面的链表转红黑树的过程。

在这里插入图片描述

当添加key="name"节点时,会进行扩容,容量大小由16变为32,此时oldMap数据迁移到newMap后数据排列如何呢?
这里比较简单,没涉及到红黑树的拆分,而且链表长度都是大于1个的,直接由(hash & oldCap)重新计算位置:

public class Test {
    public static void main(String[] args) {
        cal(null,0);
        cal(16,0);

        cal(8,8);
        cal(24,8);
        cal(40,8);
        cal(56,8);
        cal(88,8);
        cal(72,8);
        cal(104,8);
        cal(120,8);
        cal("name",8);
    }

    static void cal(Object key,int oldIndex) {
        //将oldMap容量和节点hash值进行&按位与运算
        if( (16 & hash(key)) ==  0){//结果为0,节点放到newMap位置与在oldMap下标index位置一样
            System.out.println("原key=" + key + ",迁移到newMap数组下标位置为:" + oldIndex);
        }else{//结果不为0,节点放到newMap位置刚好等于oldMap下标index位置 + oldMap数组容量大小
            System.out.println("原key=" + key + ",迁移到newMap数组下标位置为:" + (oldIndex + 16));
        }
    }

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
}

原来所有key,迁移到newMap后数组index下标位置如下:

原key=null,迁移到newMap数组下标位置为:0
原key=16,迁移到newMap数组下标位置为:16
原key=8,迁移到newMap数组下标位置为:8
原key=24,迁移到newMap数组下标位置为:24
原key=40,迁移到newMap数组下标位置为:8
原key=56,迁移到newMap数组下标位置为:24
原key=88,迁移到newMap数组下标位置为:24
原key=72,迁移到newMap数组下标位置为:8
原key=104,迁移到newMap数组下标位置为:8
原key=120,迁移到newMap数组下标位置为:24
原key=name,迁移到newMap数组下标位置为:24

所以示例代码,添加元素后,正确的数据结构应该是这样的:
在这里插入图片描述

通过debug断点,也可以看到扩容后节点主要被分配到了8、16、24这个三个数组下标位置:
在这里插入图片描述

不过一般情况下,HashMap扩容是发生在添加元素时,最后通过++size > threshold判断容量大于临界值时,才进行resize()扩容

HashMap扩容机制

  • 扩容情况1:第一次添加元素会进行扩容,默认初始化容量为16
  • 扩容情况2:哈希表容量小于64时,链表长度每次大于8,都会进行resize()扩容
  • 扩容情况3:HashMap容量大于临界值时

几种扩容情况的源码如下:

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            //扩容情况1:第一次添加元素会进行扩容,默认初始化容量为16
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //扩容情况2:见treeifyBin方法说明
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize(); //扩容情况3:HashMap容量大于临界值时
        afterNodeInsertion(evict);
        return null;
    }

treeifyBin源码如下:

    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //扩容情况2:哈希表容量小于64时,链表长度每次大于8,都会进行resize()扩容
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize(); 
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            //链表树化的过程...
        }
    }

再来看HashMap的resize()扩容关键源码:

    final Node<K,V>[] resize() {
        ...
        if (oldCap > 0) {
            ...
            //oldCap << 1即2倍扩容
            else if ((newCap = oldCap << 1) < MAXIMUM\_CAPACITY &&
 oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }


如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费**学习**大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。



### 一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。



![](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)

### 二、学习软件



工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。



![](https://img-blog.csdnimg.cn/img_convert/8c4513c1a906b72cbf93031e6781512b.png)



### 三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

![](https://img-blog.csdnimg.cn/img_convert/eec417a3d4d977b313558a11d3c13e43.png)



### 四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。



![](https://img-blog.csdnimg.cn/img_convert/ec690501ea1dbe2cb209cbf4013c2477.png)  

![](https://img-blog.csdnimg.cn/img_convert/3eaeaa6747419c9d86c72e0d10d0a6a2.png)



### 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。



![](https://img-blog.csdnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)



### 五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

![](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值