1 对数器,二分查找,

文章介绍了对数器的概念及其在算法调试中的作用,通过与已知正确算法的对比验证新算法的正确性。同时,文章详细讲解了不同类型的二分查找,包括有序序列的二分查找、寻找特定值两侧位置以及在无序序列中寻找局部最小值的二分查找策略。通过对这些方法的实践,读者可以更好地理解和应用二分查找算法。
摘要由CSDN通过智能技术生成

对数器

对数器用于在自己的本地平台验证算法正确性,用于算法调试,无需online judge。

好处:

  • 没找到线上测试的online judge,则可以使用对数器。
  • 大数据样本出错时,快速找到出错地方。
  • 贪心策略使用,直接验证是否正确

实现原理:

  • 两个算法对比结果, 用一个无误的算法验证另一个算法, 无误的算法可能算法较差

代码实现:

  • 如下代码, insertSort 插入排序 用库排序sort 算法 来验证
  • 每次制造 随机长度随机值的数组.
#include <algorithm>
using namespace std;
void Swap(int &a, int &b)
{
    int temp = a;
    a = b;
    b = temp;
}
void insertSort(vector<int> &v)
{
    for (int i = 0; i < v.size() - 1; i++)
    {
        int end=i;
        while (end >= 0)
        {
            if (v[end + 1] < v[end])
            {
                Swap(v[end + 1], v[end]);
                end--;
            }
            else
            {
                break;
            }
        }
    }
}
void print(vector<int> &v)
{
    for (auto e : v)
    {
        cout << e << " ";
    }
    cout << endl;
}
void test1()
{
    //vector<int> v = {6, 5, 4, 3, 2, 1};
    vector<int> v = {6, 6, 9, 10, 2,2, 1};

    insertSort(v);
    print(v);
}


//准备一个随机数组(样本)生成器
//函数名:generateRandomVector
//函数功能描述:随机数组(样本)生成器
//函数参数: size    生成数组最大尺寸
//         value   数组每个元素的最大值
//返回值:  vector<int> 生成的数组
//for test
vector<int> generateRandomVector(int size, int value)
{
    //time 函数返回从 1970 年 1 月 1 日午夜开始到现在逝去的秒数,因此每次运行程序时,它都将提供不同的种子值。
    srand((int)time(NULL));//为随机数生成器产生随机种子
    //分配随机大小的数组,产生随机数的范围公式number = (rand()%(maxValue - minValue +1)) + minValue;
    vector<int> result(rand() % (size + 1));
    for (auto i = 0; i < result.size(); i++)
    {
        result[i] = rand() % (value + 1);
    }

    return result;

}

//大样本测试
//函数名:main
//函数功能描述:大样本测试
//函数参数: size    生成数组最大尺寸
//         value   数组每个元素的最大值
//返回值:  vector<int> 生成的数组
//for test
int main()
{
    auto test_time = 50000;//测试次数,设置比较大,排除特殊情况
    auto size = 10;//生成数组最大尺寸
    auto value = 30;//生成数组每个元素的最大值
    auto if_accept = true;//方法是否正确标志位
	for(auto i = 0; i < test_time; i++)
	{
        //拷贝初始化,生成新的数组向量
        vector<int> nums(generateRandomVector(size, value));
        //生成两个临时数组拷贝
        vector<int> nums1(nums);
        vector<int> nums2(nums);

		//绝对正确方法
        sort(nums1.begin(), nums1.end());
		//自己写的方法,想要测试的算法
        insertSort(nums2);
		//判断两个向量是否相同,vector类已经重载了比较运算符,不用自己实现,不相同说明算法不正确
		if(nums1 != nums2)
		{
            if_accept = false;
			//输出结果不相等的原始向量
			for(auto c: nums)
			{
                cout << c << " ";
			}
			break;
		}
		
	}
	//输出结果
    cout << (if_accept ? "nice!\n" : "false!\n");
    
}

二分查找

1. 有序序列二分查找

代码实现:

bool binarySearch(vector<int>& v , int targer)
{
    if(v.empty())return false;
    int L=0;
    int R=v.size()-1;
    int mid=0;
   // while(L<=R)// 以 L和R之间至少一个数,二分的逻辑就不一样了
    while(L<R)  // 以L和R之间至少两个数, 最后一次需要判断一下L的位置,已经验证过了,边界条件就是这样.
    {
        mid=L + (R-L>>1);
        if(v[mid] == targer)
        {
            return true;
        }
        else if(v[mid] > targer)
        {
            R = mid - 1;
        }
        else
        {
            L = mid + 1;
        }
    }
    return v[L] == targer; // 最后一次没有判断, 两种情况 L==R , R == L-1 -- R已经判断了,所以两种情况都是需要判断L的,有点难理解这个边界条件;
}

边界控制:
在这里插入图片描述

2. 在一个有序数组中,找<=某个数最右侧的位置

解题步骤:

  • 两种方式可能就是边界不一样,代码二每次都要检查最后的L下标。
  • 算法分析:
  • 找到<=某个数时使用index记录,继续往右找。

代码一:

int nearestIndexR1(vector<int>& v,int targer)
{
    int L=0;
    int R=v.size()-1;
    int index=-1;
    while(L<=R)
    {
        int mid = L + ((R-L)>>1);
        if(v[mid]<=targer)
        {
            index=mid;
            L=mid+1;
        }
        else
        {
            R = mid -1;
        }
    }
    return index;
}

代码二:

int nearestIndexR2(vector<int>& v,int targer)
{
    int L=0;
    int R=v.size()-1;
    int index=-1;
    while(L<R)
    {
        int mid = L + ((R-L)>>1);
        if(v[mid]<=targer)
        {
            index=mid;
            L=mid+1;
        }
        else
        {
            R = mid -1;
        }
    }
    if(v[L]<=targer)index=L;
    return index;
}

3. 在一个有序数组中,找>=某个数最左侧的位置

解题步骤:

  • 与2类似。
int nearestIndexL(vector<int>& v,int targer)
{
    int L=0;
    int R=v.size()-1;
    int index=-1;
    while(L<=R)
    {
        int mid= L + ((R-L)>>1);
        if(v[mid]>=targer)
        {
            index = mid ;
            R = mid -1 ;
        }
        else
        {
            L = mid +1;
        }
    }    
    return index;
}

4. 无序序列二分查找 ,求局部最小值

在一个无序数组中, 值有可能正, 负, 或者零, 数组中任由两个相邻的数一定不相等.
定义局部最小:
1.长度为1,arr[0]就是局部最小;
2.数组的开头,如果arr[0] < arr[1] ,arr[0]被定义为局部最小。
3.数组的结尾,如果arr[N-1] < arr[N-2] ,arr[N-1]被定义为局部最小。
任何一个中间位置i, 即数组下标1~N-2之间, 必须满足arr[i-1] < arr[i] <arr[i+1] ,叫找到一个局部最小。
请找到任意一个局部最小并返回。

需要注意:

  • 二分不一定要有序才能二分。
    1. 数据状况特殊。(无序的)
    1. 问题特殊 。(局部最小值)
  • 1和2结合分析,就有可能找出最优解,这种能力需要锻炼。
  • 二分最优解,就是找出具有排他性的规律。

解题步骤:

任意两个都相邻是不相等的,所以中间必有存在一个变化曲线, 但是为什么先往下降,最后是上扬
中间我不管你怎么连这个变化曲线一定存在局部最小
在这里插入图片描述

  • 局部最小值一定存在,好像是什么定理。
  • begin是数组首元素下标,end是数组尾元素下标,nums是数组。
  • if nums[begin] < nums[begin+1] ,找到了,返回bgein。
  • if nums[end] < nums[end-1] ,找到了, 返回end。
  • else
  • nums[begin] > nums[begin+1] 和 nums[end] > nums[end-1]
    • 往begin+1 和 end-1 之间找, nums[i] < nums[i-1] && nums[i]< nums[i+1]
  • 查找步骤:
  • 看代码把,有点难解释,就是找上扬和下趋

如图:
四种情况
在这里插入图片描述

int getLessIndex(vector<int>& nums)
{
    if(nums.empty())return -1;
    if(1<nums.size() && nums[0]<nums[1])return 0;
    if(nums[nums.size()-2]<nums[nums.size()-1])return nums.size()-1;

    int left = 1;
    int right = nums.size()-2;
    int mid=0;
    while(left<right)
    {
        mid=left+ (right-left>>1);
        if(nums[mid]>nums[mid+1])
        {
            left = mid +1 ;
        }
        else if (nums[mid]>nums[mid-1])
        {
            right = mid -1;
        }
        else{
            return mid;
        }
    }
    if(nums[left]nums[left+1] && nums[left]< nums[left-1]) return left;
    return -1;
}
void testgetLessIndex()
{
    vector<int> v = {5,4,3,2,1,10,9};
    cout<< v[getLessIndex(v)]<<endl;
}
int main()
{
    testgetLessIndex();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2023框框

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值