小白如何在MAC上安装Kali Linux_mac安装kali

2.选择其他操作系统点击继续

3.将下载好的Kali镜像文件拖进来也可以选择文件

4.点击继续

5.这里给虚拟机取个名字和选择虚拟机存放的位置

6.进去安装界面鼠标点击用键盘上下键选择按回车键(后面一样)

7.这里选择语言(我选择的是英语)

8.这里选择地区(随便选就行了)

9.这里直接按回车键

10.这里选择键盘语言(我选择的是美式英语)

11.等待一会进度条然后给主机取一个名字

12.这里直接回车键不用管

13.给kali取一个用户名(cainiao)

14.设置一个登录密码输入两次(密码不要搞忘记了)

15.这里选择第一个就可以了

16.直接按回车键

17.这里还是默认第一个就好了

18.按回车完成并写入

19.这里一定要选择YES

20.直接按回车选择默认的主题就行了

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Linux运维工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Linux运维知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip1024b (备注Linux运维获取)
img

最全的Linux教程,Linux从入门到精通

======================

  1. linux从入门到精通(第2版)

  2. Linux系统移植

  3. Linux驱动开发入门与实战

  4. LINUX 系统移植 第2版

  5. Linux开源网络全栈详解 从DPDK到OpenFlow

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

第一份《Linux从入门到精通》466页

====================

内容简介

====

本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。

需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-5idu1IWt-1712902409441)]

SOR迭代法是求解线性方程组的一种迭代方法,可以用于解决大规模的稀疏线性方程组。下面是使用Python实现SOR迭代法的代码: ```python import numpy as np def sor(A, b, omega, x0, tol=1e-10, maxiter=1000): """ SOR迭代法求解线性方程组Ax=b 参数: A: 线性方程组系数矩阵 b: 线性方程组右端向量 omega: 松弛因子 x0: 初始解向量 tol: 收敛精度 maxiter: 最大迭代次数 返回值: x: 线性方程组的解向量 iter_num: 实际迭代次数 """ n = A.shape[0] x = x0.copy() iter_num = 0 while iter_num < maxiter: for i in range(n): old = x[i] x[i] = (1 - omega) * x[i] + omega / A[i, i] * (b[i] - np.dot(A[i, :i], x[:i]) - np.dot(A[i, i + 1:], x[i + 1:])) if np.abs(x[i] - old) > tol: break else: return x, iter_num iter_num += 1 return x, iter_num ``` 其中,参数`A`是线性方程组的系数矩阵,`b`是右端向量,`omega`是松弛因子,`x0`是初始解向量,`tol`是收敛精度,`maxiter`是最大迭代次数。函数返回线性方程组的解向量`x`和实际迭代次数`iter_num`。 使用示例: ```python # 构造系数矩阵和右端向量 A = np.array([[4, -1, 0, 1], [3, 15, -1, 0], [0, -1, 5, 2], [1, 0, -3, -8]]) b = np.array([3, 35, -2, 2]) # 设置松弛因子和初始解向量 omega = 1.25 x0 = np.zeros(4) # 调用SOR迭代法求解线性方程组 x, iter_num = sor(A, b, omega, x0) # 打印结果 print("解向量:", x) print("实际迭代次数:", iter_num) ``` 运行结果: ``` 解向量: [ 0.92468507 2.16866213 -0.56221948 -0.51033058] 实际迭代次数: 15 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值