Codeforces Round #752 (Div. 2)
A
题目:
向一个序列中任意位置插入元素,求把一个序列变成满足对任意的元素有, a i < = i a_i<=i ai<=i,的最小操作次数。
思路
- 显然往头部插入,对答案有最大的贡献,只要对所有元素操作次数取max即可
###AC代码
#include <bits/stdc++.h>
#define yes puts("yes");
#define inf 0x3f3f3f3f
#define ll long long
#define linf 0x3f3f3f3f3f3f3f3f
#define debug(x) cout<<"> "<< x<<endl;
#define ull unsigned long long
#define endl '\n'
#define lowbit(x) x&-x
//#define int long long
using namespace std;
typedef pair<int,int> PII;
const int N =10 + 1e5 ,mod=1e9 + 7;
int n;
int a[N];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
int ans =0 ;
for(int i=1;i<=n;i++){
if(i+ans<a[i]){
ans += a[i] - (i+ans);
}
}
cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio();cin.tie();cout.tie();
int T;cin>>T;
while(T--)
solve();
return 0;
}
B
题目:
可以把一个序列分成若干个连续的部分,对每个子数组的最长上升子序列的长度求异或和,问最后能否有一种方案使得这个异或和为0.
思路
- 乍一看很难,但仔细思考其实就是一个简单的构造,对于异或和的问题,要求为0,优先考虑奇偶性,以及寻找相同的元素。
- 显然,如果n为偶数,那么,把这个序列分为n份,每份的最长上升子序列都是1,偶数个1的异或一定是0.
- 对于n为奇数的情况,考虑化归为偶数,因为对于一个非严格递减的序列,它的贡献恒为1,所以如果找到一个长度为偶数的非严格递减序列,它可以等价为一个元素,这样就变成了奇数个1和这个等价元素提供的1,它们的异或和为0。如此确切的讲,只要找到一个长度为2的非严格递减片段,那么这个序列的构造方案就是存在的。
AC代码
#include <bits/stdc++.h>
#define yes puts("yes");
#define inf 0x3f3f3f3f
#define ll long long
#define linf 0x3f3f3f3f3f3f3f3f
#define debug(x) cout<<"> "<< x<<endl;
#define ull unsigned long long
#define endl '\n'
#define lowbit(x) x&-x
//#define int long long
using namespace std;
typedef pair<int,int> PII;
const int N =10 + 1e5 ,mod=1e9 + 7;
int n;
int a[N];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
if(n%2==0){
cout <<"YES\n";
return;
}
for(int i=2;i<=n;i++){
if(a[i]<=a[i-1]){
cout<<"YES\n";
return;
}
}
cout<<"NO\n";
}
signed main()
{
ios::sync_with_stdio();cin.tie();cout.tie();
int T;cin>>T;
while(T--)
solve();
return 0;
}
C
题目:
对一个序列某个元素,如果它无法被 i + 1 i+1 i+1,整除,那么我们就可以删除这个元素,问最后是否可以把这个序列给删成空序列。
思路
- 容易观察到,对第一个元素,它只可能和2做除法。假设第一个元素是可以删除的,考虑第二个元素,首先它可以和3做除法,又因为1可删,可以通过删除顺序的变更使得第二个元素化归的第一个元素,所以总的来说第二个元素可以和2,3做除法。
- 以此类推,对第i个元素,它可以和 [ 2 , i + 1 ] [2,i+1] [2,i+1]的元素做除法,只要存在一个元素使得这个元素除不尽,这就是可删的。
- 另外,如果一个元素无法被删除,也即它是 [ 2 , i + 1 ] [2,i+1] [2,i+1]这个区间中所有数字的公倍数,当 i > 22 i>22 i>22后,LCM也超过了1e9了,在1e9范围内的整数如果无法被删除,它的i一定不会超过22,如果一个元素可以被删除, [ 1 , 22 ] [1,22] [1,22]中一定有一个数字使得除不尽,所以即使暴力找,他的复杂度也是 O ( n ) O(n) O(n)的.
AC代码
#include <bits/stdc++.h>
#define yes puts("yes");
#define inf 0x3f3f3f3f
#define ll long long
#define linf 0x3f3f3f3f3f3f3f3f
#define debug(x) cout<<"> "<< x<<endl;
#define ull unsigned long long
#define endl '\n'
#define lowbit(x) x&-x
//#define int long long
using namespace std;
typedef pair<int,int> PII;
const int N =10 + 1e5 ,mod=1e9 + 7;
int n;
int a[N];
void solve()
{
p.clear();
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<=n;i++){
bool ok = 0;
for(int j=2;j<=i+1;j++)
if(a[i]%j){
ok = 1;
break;
}
if(!ok){
cout<<"NO\n";
return;
}
}
cout << "YES\n";
}
signed main()
{
ios::sync_with_stdio();cin.tie();cout.tie();
int T;cin>>T;
while(T--)
solve();
return 0;
}
D
题目:
求一个n,满足 n m o d x = y m o d n n mod x=y mod n nmodx=ymodn.
思路
- 显然对于 x = y x=y x=y和 x > y x>y x>y的情况很好解决
- 如果 x < y x<y x<y,打表可知n在 [ x , y ] [x,y] [x,y]中,可以构造出:n是一个比kx多t的数,并且n比y少t,可得构造公式.
PS:不好描述,详见官方题解.
AC代码
#include <bits/stdc++.h>
#define yes puts("yes");
#define inf 0x3f3f3f3f
#define ll long long
#define linf 0x3f3f3f3f3f3f3f3f
#define debug(x) cout<<"> "<< x<<endl;
#define ull unsigned long long
#define endl '\n'
#define lowbit(x) x&-x
//#define int long long
using namespace std;
typedef pair<int,int> PII;
const int N =10 + 1e5 ,mod=1e9 + 7;
int x,y;
ll n;
void solve()
{
cin>>x>>y;
if(x==y){
cout<<x<<endl;
return;
}
if(x>y){
cout << x + y<<endl;
return;
}else{
int i = x, j = y;
//
cout << (j / i * i + j) / 2 << endl;
// cout<<x+1<<endl;
}
}
signed main()
{
ios::sync_with_stdio();cin.tie();cout.tie();
int T;cin>>T;
while(T--)
solve();
return 0;
}