淘宝用户行为数据分析

这篇博客分析了淘宝用户行为数据,通过AIPL模型揭示了拉新、首购和复购环节的转化率,指出拉新环节转化率低,而复购环节表现优秀。在拉新环节中,发现22-23点为最佳投放时间,同时建议优化商品推荐以提高转化率。针对首购环节,提出引导用户收藏和加购以提高购买转化率。在复购环节,建议根据用户回购周期进行触达和召回策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 项目背景

1.1分析意义

1.2数据集

2 数据清洗

3 确定研究方向

3.1整体描述性分析

3.2 AIPL模型分析

4 分析原因

4.1拉新环节【A-I】分析——转化率9.32%

4.1.1人—高效转化时间探索:

4.1.2货—商品吸引力探索:

4.1.3场—平台推荐准确度

4.2 收割用户首购环节【I-P】分析——转化率24.65%

4.2.1用户行为路径分析

4.2.2购买用户特征分析

4.3 收割用户复购环节【P-L】分析——转化率66.92%

4.3.1用户分层—RFM价值模型分析

4.3.2商品分类—波士顿矩阵商品价值分析

4.3.3回购周期分析

5 优化策略

5.1【A-I】拉新环节

5.2【I-P】收割用户首购环节

5.3【P-L】收割用户复购环节

1 项目背景

1.1分析意义

        随着线上消费市场的逐渐饱和,电商行业由“流量”时代逐渐过渡为“存量”时代电商平台也已经由供给驱动向需求驱动转型在这种情况下,“用户体验”的作用被反复强调,对于电商平台来说,如何洞察用户的需求,实现精准营销,提供定制服务,提升用户粘性已经成为了首要任务。

1.2数据集

        本数据报告收录了来自淘宝app的100万+用户2017-11-25至2017-12-03期间的移动端行为数据。具体数据集信息如下

字段

字段说明

提取说明

user_id

用户标识

抽样&字段脱敏

item_id

商品标识

字段脱敏

behavior_type

用户对商品的行为类型

包括浏览、收藏、加购物车、购买取值分别是('pv', 'buy', 'cart', 'fav')

item_category

商品分类标识

字段脱敏

datetime

行为时间

时间戳

        此次分析旨在通过用户行为数据集,对用户购物过程中的行为作出分析,找出用户增长过程中存在的问题并给出优化建议

2 数据清洗

       减少数据量:由于电脑性能问题,处理1亿+行数据不现实,故挑选从3千万行至4千万行中的1千万条交互行为数据进行分析。

import time
import datetime
from datetime import datetime

data['dt'] = data['datetime'].apply(lambda x: pd.to_datetime(x, unit='s')) 
data['dt'] = data['dt']+datetime.timedelta(hours=8)  #to_datetime转化时间戳会提前8小时
data['weekday']=pd.to_datetime(data['dt'],format='%Y-%m-%d').dt.weekday #int,0对应周一
data['date']=pd.to_datetime(data['dt']).dt.date
data['hour']=pd.to_datetime(data['dt'],format='%Y-%m-%d').dt.hour 
data = data[(data['date']>pd.to_datetime('2017-11-24',format='%Y-%m-%d'))&(data['date']<pd.to_datetime('2017-12-04',format='%Y-%m-%d'))]

       数据预处理:剔除行为日期在2017-11-25至2017-12-03期间之外的行为数据;将日期列由时间戳格式转化为日期格式,并添加hour列,weekday列,便于后续做趋势分析与对比分析。

3 确定研究方向

3.1整体描述性分析

        清洗后的数据集中包含99865个淘宝用户、1616740个商品、8108个商品类别,共计9994316条交互信息,虽缺少交易金额信息,但9百万+个行为数据已足以支撑后续用户行为分析。

3.2 AIPL模型分析

        使用AIPL模型对用户全生命周期进行漏斗分析,进而找出运营中存在的问题。

        【计算说明】:

        A = 浏览次数总和

        I = 收藏与加购次数总和

        P = 各用户对各商品首购次数总和

        L = 各用户对各商品复购次数总和

        【数据解释】:

        计算A、I、P、L值

类别

行为计数

A(认知)

8954365

I(兴趣)

834294

P(购买)

205657

L(复购)

137616

        计算各环节转化率

环节

转化率

【A-I】拉新

9.32%

【I-P】收割之首购

24.65%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值