目录
4.2 收割用户首购环节【I-P】分析——转化率24.65%
4.3 收割用户复购环节【P-L】分析——转化率66.92%
1 项目背景
1.1分析意义
随着线上消费市场的逐渐饱和,电商行业由“流量”时代逐渐过渡为“存量”时代,电商平台也已经由供给驱动向需求驱动转型。在这种情况下,“用户体验”的作用被反复强调,对于电商平台来说,如何洞察用户的需求,实现精准营销,提供定制服务,提升用户粘性已经成为了首要任务。
1.2数据集
本数据报告收录了来自淘宝app的100万+用户在2017-11-25至2017-12-03期间的移动端行为数据。具体数据集信息如下。
字段 |
字段说明 |
提取说明 |
user_id |
用户标识 |
抽样&字段脱敏 |
item_id |
商品标识 |
字段脱敏 |
behavior_type |
用户对商品的行为类型 |
包括浏览、收藏、加购物车、购买,取值分别是('pv', 'buy', 'cart', 'fav') |
item_category |
商品分类标识 |
字段脱敏 |
datetime |
行为时间 |
时间戳 |
此次分析旨在通过该用户行为数据集,对用户购物过程中的行为作出分析,找出用户增长过程中存在的问题并给出优化建议。
2 数据清洗
减少数据量:由于电脑性能问题,处理1亿+行数据不现实,故挑选从3千万行至4千万行中的1千万条交互行为数据进行分析。
import time
import datetime
from datetime import datetime
data['dt'] = data['datetime'].apply(lambda x: pd.to_datetime(x, unit='s'))
data['dt'] = data['dt']+datetime.timedelta(hours=8) #to_datetime转化时间戳会提前8小时
data['weekday']=pd.to_datetime(data['dt'],format='%Y-%m-%d').dt.weekday #int,0对应周一
data['date']=pd.to_datetime(data['dt']).dt.date
data['hour']=pd.to_datetime(data['dt'],format='%Y-%m-%d').dt.hour
data = data[(data['date']>pd.to_datetime('2017-11-24',format='%Y-%m-%d'))&(data['date']<pd.to_datetime('2017-12-04',format='%Y-%m-%d'))]
数据预处理:剔除行为日期在2017-11-25至2017-12-03期间之外的行为数据;将日期列由时间戳格式转化为日期格式,并添加hour列,weekday列,便于后续做趋势分析与对比分析。
3 确定研究方向
3.1整体描述性分析
清洗后的数据集中包含99865个淘宝用户、1616740个商品、8108个商品类别,共计9994316条交互信息,虽缺少交易金额信息,但9百万+个行为数据已足以支撑后续用户行为分析。
3.2 AIPL模型分析
使用AIPL模型对用户全生命周期进行漏斗分析,进而找出运营中存在的问题。
【计算说明】:
A = 浏览次数总和
I = 收藏与加购次数总和
P = 各用户对各商品首购次数总和
L = 各用户对各商品复购次数总和
【数据解释】:
计算A、I、P、L值
类别 |
行为计数 |
A(认知) |
8954365 |
I(兴趣) |
834294 |
P(购买) |
205657 |
L(复购) |
137616 |
计算各环节转化率
环节 |
转化率 |
【A-I】拉新 |
9.32% |
【I-P】收割之首购 |
24.65% |