电脑开机一段时间就断网,只有重启才能恢复网络(就算插网线都不行),本篇文章直接解决,不要再看别人的垃圾方法啦

下面的是我解决问题的心路历程,不想看的可以直接跳到解决方法上面!

内心思路:

w11电脑更新过系统后,我的电脑是常年不关机的,但是一天突然断网,试了很多方法都连不上,重启电脑就会好,我也没当回事,谁能想到第二天差不多相同时间自己又断网了,我又重启恢复,往复四天,我忍不了了,直接开整!

解决历程:

首先想到的就是驱动问题,我重新安装了好几次驱动,但是我发现就算我插网线也还是断网,那就可以排除驱动的问题。

那么结合这个断网是周期性的那是不是可能是电池模式搞的鬼,我更改了设备管理器--网卡--电源管理--(取消勾选)允许计算机关闭此设备以节约电源,结果以失败告终。

最后,那就只剩本地服务设置可以做文章了。(有效)

解决方法:

win + r 输入:services.msc打开本地服务设置;

找到下面的三个选项

将对应的启动类型改成自动。

最后依次打开:控制面板--网络和internet--网络连接

看看是不是你的和我的显示一样(网卡名称会不同)

大功告成啦!!

### 使用PINN(物理信息神经网络解决偏微分方程的实例 #### 背景介绍 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种结合深度学习与物理学知识的方法,能够高效求解复杂的偏微分方程(Partial Differential Equations, PDEs)。这种方法的核心在于将已知的物理规律作为约束条件嵌入到神经网络训练过程中,从而提高模型预测能力并减少对大量数据的需求。 以下是几个典型的PINN用于求解PDE的具体案例及其代码实现: --- #### 案例1:一维热传导方程 在一维空间中,热传导过程可以用如下形式表示: \[ u_t = \alpha u_{xx}, \quad x \in [a,b], t > 0, \] 其中 \(u(x,t)\) 表示温度分布,\(t\) 是时间变量,\(x\) 是位置坐标,而 \(\alpha\) 则代表材料的导热系数。边界条件可以设定为固定端点处的温度值或者绝热状态下的梯度零假设。 ##### 实现步骤 下面展示了一段基于PyTorch框架的一维热传导方程解决方案[^2]: ```python import torch import numpy as np # 定义神经网络结构 class Net(torch.nn.Module): def __init__(self, layers): super(Net, self).__init__() self.linears = torch.nn.ModuleList([torch.nn.Linear(layers[i], layers[i+1]) for i in range(len(layers)-1)]) def forward(self, x): a = x for i, l in enumerate(self.linears[:-1]): a = torch.tanh(l(a)) a = self.linears[-1](a) return a # 初始化参数 layers = [2, 20, 20, 1] # 输入维度 (x,t),隐藏层节点数,输出维度(u) model = Net(layers) def compute_loss(model, x_data, t_data, alpha=0.1): """定义损失函数""" xt = torch.cat((x_data.unsqueeze(-1), t_data.unsqueeze(-1)), dim=-1).requires_grad_(True) u_pred = model(xt) grad_u = torch.autograd.grad( outputs=u_pred.sum(), inputs=xt, create_graph=True)[0] u_x = grad_u[:, 0].view(-1, 1) u_t = grad_u[:, 1].view(-1, 1) hessian_xx = torch.autograd.grad(outputs=u_x, inputs=xt, retain_graph=True, create_graph=True)[0][:, 0].view(-1, 1) pde_residual = u_t - alpha * hessian_xx mse_pde = torch.mean(pde_residual ** 2) return mse_pde # 训练循环省略... ``` 上述代码片段展示了如何构建一个简单的全连接前馈神经网络,并通过自动微分技术计算目标函数相对于输入的空间二阶导数以及时间一阶导数,进而形成残差项以优化整个系统性能。 --- #### 案例2:Burgers' 方程 另一个经典例子是非线性的 Burgers’ 方程,在流体力学领域具有重要意义: \[ u_t + uu_x = \nu u_{xx}, \] 这里引入了粘滞效应因子 \(\nu>0\) 来描述扩散现象的影响程度。该类问题同样可以通过调整相应超参设置来适配不同场景需求[^1]。 --- #### 已验证的有效性分析 研究表明,相比于传统数值方法如有限元法或谱方法等,采用PINN不仅可以获得更高的精度而且还能显著降低运算成本特别是当面对高维情形时优势更加明显。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值