FaceForensics++数据库下载(一步步解析过程)

FaceForensics++数据库下载(超详细版教程)

相信很多做deepfake相关研究的朋友,在对模型进行测试或者对潜前人的研究进行复现时,都需要下载一系列数据库并进行预处理等操作,而FaceForensics++数据库是一个由数千个使用不同DeepFake方法操纵的视频组成,并包含四个假子数据集,即DeepFake Detection (DFD), DeepFake (DF), Face2Face (F2F)和FaceSwap (FS)。

由于这是国外的数据集所以一下的操作都需要挂代理来实现:(如果小伙伴无法挂代理可以评论留言,我发给你)

获取下载脚本并并保存到本地

ondyari/FaceForensics: Github of the FaceForensics dataseticon-default.png?t=N7T8https://github.com/ondyari/FaceForensicsff++的官网如上,按照上面的要求填写谷歌的表格,他会通过邮件给你发脚本代码,这里不赘述,我会在文章最后附上这个代码,大家就可以不用填写表格了。

CMD窗口下载数据库

打开cmd窗口

将文后我给的代码粘贴并后缀改为.py文件,确保你的文件命名为FaceForensics++.py

cd  you_dir # 转到这个.py文件所属的文件夹下

接着cmd窗口会显示已经进入目标文件夹,接着输入下载命令:

python FaceForensics++.py
//前面的python指你的电脑本身的python.exe文件,注意并不一定是“python”,需要观察你自己下载的python中的pythin.exe文件的命名是什么,比如笔者下载的python运行文件的命名是python3.11.exe,所以这里就应该python3.11
    <output path>
    //这里意思是数据下载的地址,即你的数据集要放在哪里(注意存储空间要足够)
    -d <dataset type, e.g., Face2Face, original or all>
    //如果你要下载FaceForensics++全部直接-all即可,也可以选择FaceForensics++数据集其中的一项来下载
    -c <compression quality, e.g., c23 or raw>
    //这里指压缩参数选择,如果想要下载原始数据可以选-raw,笔者下载的是-23压缩版
    -t <file type, e.g., videos, masks or models>
    //文件下载的类型-video即可下载deepfake的video

比如,要在D盘上的FaceForensics++文件里下载FaceForensics++数据集全部视频,以C23参数压缩,命令可以是:

python3.11 FaceForensics.py E:/FaceForensics++ -d all -c c23 -t videos

注意,运行过程中如果出现“502 BadGateway”提示,可能是你的服务不能使用脚本默认的,而是需要更改,脚本里面提供了三个server可供选择,分别是EU,EU2和CA,对应了欧洲1,2和加拿大,默认使用的是EU,脚本这部分代码如下:

 parser.add_argument('--server', type=str, default='EU',
                        help='Server to download the data from. If you '
                             'encounter a slow download speed, consider '
                             'changing the server.',
                        choices=SERVERS
                        )
    args = parser.parse_args()

    # URLs
    server = args.server
    if server == 'EU':
        server_url = 'http://canis.vc.in.tum.de:8100/'
    elif server == 'EU2':
        server_url = 'http://kaldir.vc.in.tum.de/faceforensics/'
    elif server == 'CA':
        server_url = 'http://falas.cmpt.sfu.ca:
### 关于FaceForensics++数据集及其工具 FaceForensics++ 是一个专门用于面部伪造检测的研究数据集,该数据集使得研究人员可以采用监督方式来训练基于深度学习的方法[^1]。此数据集中包含了通过四种先进方法——Face2Face、FaceSwap、DeepFakes 和 Neural Textures 创建的人脸操纵视频。 #### 数据集特点 为了支持更广泛的研究需求,FaceForensics++ 提供了不同质量级别的图像压缩版本以及原始未压缩的高清素材。这有助于评估算法在实际应用场景中的鲁棒性和泛化能力。此外,在论文《On the Detection of Digital Face Manipulation》中提到,除了提供高质量的数据外,还开发了一些辅助工具和技术来帮助分析和理解这些伪造内容的影响[^2]。 #### 工具与技术 针对面部操作识别问题,《On the Detection of Digital Face Manipulation》提出了几种创新性的解决方案: - **注意力机制层 (Attention-based Layer)**:引入了一种新的网络结构组件,旨在突出显示输入图片中最有可能被篡改的部分。 - **操控外观模型 (Manipulation Appearance Model)**:构建了一个特定领域内的特征提取器,专注于捕捉由各种编辑手段引起的视觉差异。 - **直接回归损失函数 (Direct Regression Loss Functions)**:设计了一系列优化目标,确保预测结果不仅限于二分类标签(真/假),而是能给出更加精确的位置信息。 ```python import torch.nn as nn class AttentionLayer(nn.Module): def __init__(self, input_channels=3, output_channels=64): super(AttentionLayer, self).__init__() # 定义卷积层和其他必要的参数 def forward(self, x): # 实现前向传播逻辑 pass ``` 上述代码片段展示了如何定义一个简单的注意力机制层类 `AttentionLayer` 的框架,具体实现细节需依据实际情况调整。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值